

Bebauungsplan Nr. 14 "Gemeinde-, Schul- und Sportzentrum" 15. Änderung

Oberflächenentwässerungskonzept

Auftraggeber Gemeinde Twist

Flensbergstraße 7 49767 Twist

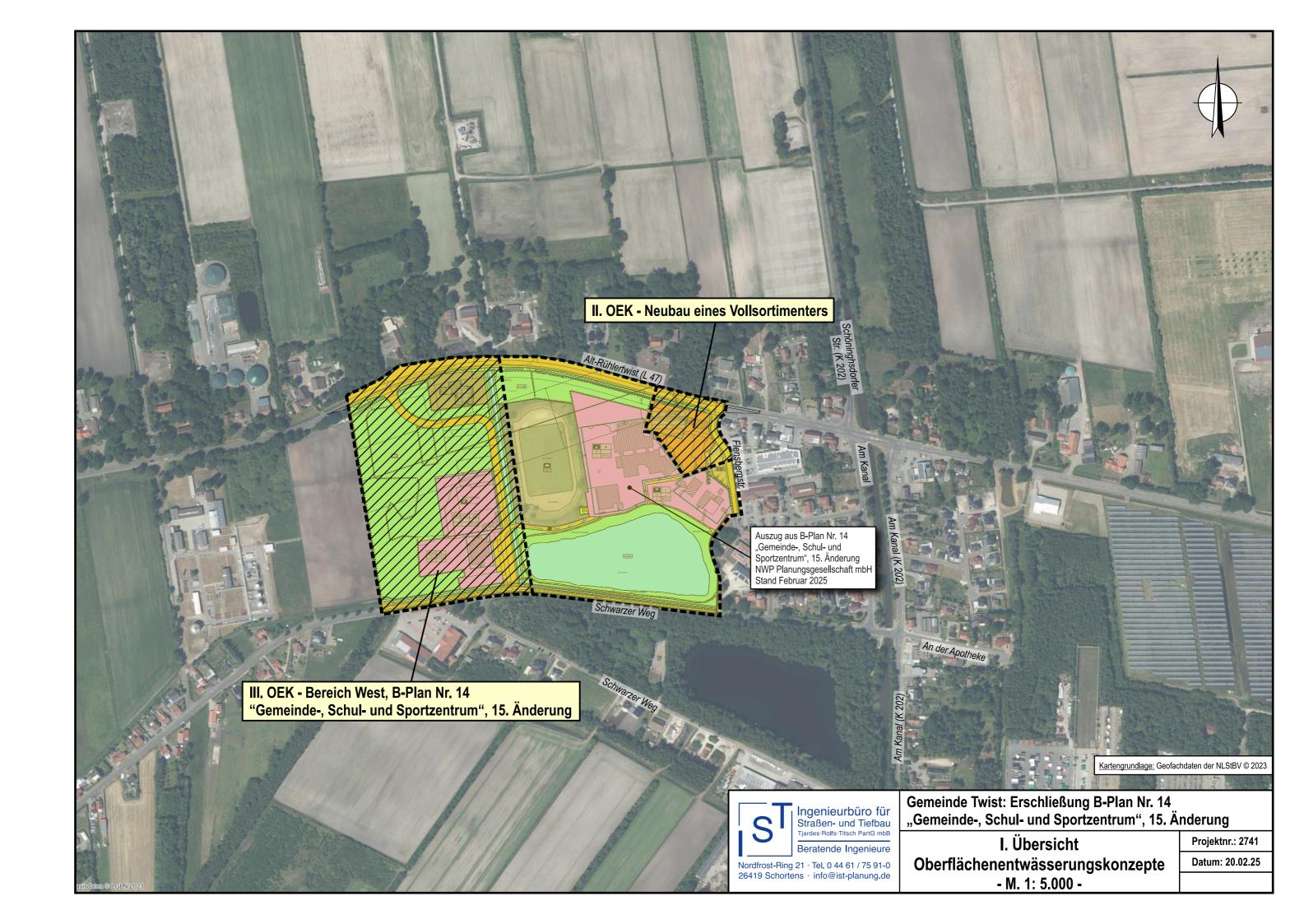
Auftragnehmer Ingenieurbüro für Straßen- und Tiefbau Tjardes • Rolfs • Titsch PartG mbB

Nordfrost-Ring 21 26419 Schortens Tel.: 0 44 61 / 75 91 - 0 info@ist-planung.de

Projektbearbeitung B. Eng. Jörg Büsing

Karin Osterthun

Projektnummer 2741


Aufgestellt Februar 2025

Bebauungsplan Nr. 14 "Gemeinde-, Schul- und Sportzentrum" 15. Änderung

Oberflächenentwässerungskonzept

Inhaltsverzeichnis

- I. Übersicht Oberflächenentwässerungskonzepte
- II. OEK Neubau eines Vollsortimenters
- III. OEK Bereich-West, B-Plan Nr. 14 "Gemeinde- Schul- und Sportzentrum", 15. Änderung

II. Neubau eines Vollsortimenters

Oberflächenentwässerungskonzept

Auftraggeber Kanne Group Investment AG

Green Energy Park 1

26892 Heede

Auftragnehmer Ingenieurbüro für Straßen- und Tiefbau Tjardes • Rolfs • Titsch PartG mbB

Nordfrost-Ring 21 26419 Schortens Tel.: 0 44 61 / 75 91 - 0 info@ist-planung.de

Projektbearbeitung B. Eng. Jörg Büsing

B. Eng. Marina Donker

Fabian Georg

Projektnummer 2741

Aufgestellt Februar 2025

Gemeinde Twist Neubau eines Vollsortimenters Inhaltsverzeichnis

1. Erläuterungsbericht inkl. Anhänge

- a. Niederschlagshöhen KOSTRA DWD 2020 4.1– Atlas des Deutschen Wetterdienstes
- b. Bemessung von Regenrückhalteräumen nach DWA-A 117
- c. Bestimmung des Abflussbeiwertes nach DWA-A 138
- d. Bewertung von Niederschlagswasser nach dem Arbeitsblatt DWA-A 102/BWK-A 3

2. Übersichten

	2.1 Übersichtskarte	M. 1:	25.000
	2.2 Übersichtslageplan	M. 1:	5.000
3.	Entwässerungspläne		
	3.1. Entwässerungsplan	M. 1:	500
4.	Bestandspläne		
	4.1. Bestandshöhenplan	M. 1:	500
5.	Systemschnitt		
	5.1. Systemskizze	M. 1 :	25

Gemeinde Twist Neubau eines Vollsortimenters Erläuterungsbericht

Inhaltsverzeichnis

1.	Darst	ellung des Vorhabens	1
1.1	Vorl	nabenträger	1
1.2	Plar	nverfasser	1
1.3	Auf	gabenstellung	1
1.4	Bes	chreibung der Bestandssituation	1
1.5	Plar	nerische Beschreibung	1
1.6	Lag	e des Untersuchungsgebietes	2
1.7	Ven	wendete Unterlagen	2
2.	Oberf	lächenentwässerung	2
2.1	Allg	emeines	2
2.2	Prü	fung Versickerung	2
2.3	Reg	enrückhalteraum	3
	2.3.1	Bemessungsparameter	3
	2.3.2	Bemessung der Rückhalteeinrichtung	4
2.4	Dro	sselbauwerk	5
	2.4.1	Oberflächenentwässerung der Bestandsbebauung	5
	2.4.2	Dimensionierung der Drossel	5
2.5	Nie	derschlagswasserbehandlung	5
3.	Schm	utzwasserentwässerung	6
4.	Zusar	nmenfassung	6

1. Darstellung des Vorhabens

1.1 Vorhabenträger

Bauherr des Neubaus eines Vollsortimenters in Twist ist die Kanne Group Investment AG, Green Energy Park 1, 26892 Heede. Tel.: 04963 / 91390.

1.2 Planverfasser

Planverfasser ist das Ingenieurbüro für Straßen- und Tiefbau Tjardes · Rolfs · Titsch PartG mbB mit Sitz am Nordfrost-Ring 21 in 26419 Schortens. Tel.: 04461/7591-0.

1.3 Aufgabenstellung

Die Kanne Group Investment AG plant, einen Vollsortimenter zusammen mit entsprechenden Parkplätzen und Außenanlagen in Twist zu errichten. Der geplante Standort befindet sich in der Flensbergstraße 21 (Flurstück 73/75) in 49767 Twist. Dieses Gelände liegt südlich der Straße Alt-Rühlertwist (L 47) und westlich der Flensbergstraße. Es grenzt im Westen an die Oberschule sowie südlich an das Erdöl-Erdgas-Museum.

Im Zuge dieses Projekts wird auch die Oberflächenentwässerung neu konzipiert. Im Rahmen dieses Oberflächenentwässerungskonzepts ist die geplante Ableitung des anfallenden Oberflächenwassers darzulegen.

1.4 Beschreibung der Bestandssituation

Der nördliche Teil des Grundstücks beherbergt derzeit einen Gebäudekomplex, der das Vereinshaus eines Schützenvereins mit einem Schießstand umfasst. Die unbebauten Flächen sind als Parkplatz und Fahrwege angelegt, während andere Bereiche des Grundstücks als Grünfläche gestaltet sind.

Um die bestehenden Entwässerungsverhältnisse zu erfassen, hat das Vermessungsbüro Plate aus Schortens die Topografie des Plangebiets sowie Querprofile der Entwässerungsgräben und vorhandenen Durchlässe aufgenommen. Basierend auf diesen Daten wurde bei einer Ortsbegehung die Lage der Entwässerungsgräben sowie ihre Funktion und Bedeutung eingeschätzt.

1.5 Planerische Beschreibung

Das Plangebiet erstreckt sich über eine Fläche von etwa 8.100 m² und umfasst die folgenden Hauptmerkmale: Geplant ist der Neubau eines Vollsortimenters mit einem angeschlossenen Bäcker auf einer Gesamtgrundfläche von etwa 2.715 m² (ca. 46,40 m x 57,20 m). Im nordwestlichen Teil des Gebäudes ist ein etwa 290 m² großes 1. Obergeschoss vorgesehen, das Büroflächen sowie Technikräume beherbergen soll. Im Außenbereich sind Stellplätze einschließlich Verkehrsanbindungen und einer LKW-Ladezone geplant. Etwa 1.130 m² im Randbereich des Grundstücks sind für Grünflächen vorgesehen. Die übrigen Gebäudeteile sollen in einem Geschoss errichtet werden. Die bestehenden Gebäude werden im Zuge der Neubebauung abgerissen. Das Planungsgebiet erstreckt sich in einer Höhenlage zwischen +17,20 mNHN bis +18,3 mNHN.

Die Erschließung und Bebauung des geplanten neuen Vollsortimenter führen zu Veränderungen im Befestigungsgrad der betroffenen Flächen, was zu einem erhöhten Oberflächenabfluss führt. Bestehende Gräben bleiben erhalten. Für die Oberflächenentwässerung des neuen Vollsortimenters ist eine unterirdische Regenrückhaltung mit Anschluss an das bestehende Regenwasserkanalnetz in der Flensbergstraße vorgesehen.

1.6 Lage des Untersuchungsgebietes

Das Untersuchungsgebiet umfasst die Grundstücke Flensbergstraße 21 (Flurstück 73/75) in der Gemeinde Twist. (Siehe Übersichtslageplan 2.2)

1.7 Verwendete Unterlagen

- Topographische Vermessung durch Vermessungsbüro Plate, Schortens vom 13.12.2023
- Auszug aus den Geobasisdaten der Niedersächsischen Vermessungs- und Katasterverwaltung
- Niedersächsische Umweltkarten des Niedersächsischen Ministeriums für Umwelt, Energie und Klimaschutz

2. Oberflächenentwässerung

2.1 Allgemeines

Ein wesentliches Anliegen moderner Siedlungsentwässerung ist es, Niederschlagswasser von befestigten Flächen weitestgehend in den natürlichen Wasserkreislauf zurückzuführen.

Niederschlagswasser sollte möglichst am Ort des Anfalles entsorgt werden. Gemäß dem Wasserhaushaltsgesetz ist eine Regenwasserversickerung allen anderen Entsorgungsvarianten vorzuziehen. Hierdurch wird eine Grundwasserneubildung gefördert.

Ist eine Versickerung des Niederschlagswassers nicht möglich bzw. gestattet, so ist eine geregelte Ableitung, Rückhaltung und Behandlung vorzusehen.

2.2 Prüfung Versickerung

Gemäß des Arbeitsblattes DWA-A 138 erfolgte die Uberprüfung der Umsetzbarkeit einer entwässerungstechnischen Versickerung. Diese ergab, dass eine Versickerung im Planungsgebiet nicht realisierbar ist.

Grundwasserflurabstand

Der Abstand von der Sohle der Versickerungsanlage zum mittleren höchsten Grundwasserstand sollte, gemäß DWA-A 138, größer als 1,0 m sein.

Ein Bodengrundgutachten im Bereich des Planungsgebietes wurde im Oktober 2023 durch die WESSLING Consulting Engineering GmbH & Co. KG (i. F. WCE) durchgeführt. Aus dem geotechnischen Bericht geht hervor, dass laut hydrogeologischer Karte Niedersachsen [U1] der obere Grundwasserleiter in einer Tiefe von etwa +15,0 und +17,5 m NHN liegt, das entspricht etwa 0,1 bis 2,6 m unter der Geländeoberkante.

Wasserschutzgebiet

Das Versickern von gesammelten Niederschlagswasser ist in den Zonen I und II der Wasserschutzgebiete i.d.R. nicht zulässig.

Anhand der Umweltkarten des Niedersächsischen Ministeriums für Umwelt, Energie und Klimaschutz ist bekannt, dass das Planungsgebiet sich nicht im Trinkwasserschutzgebiet befindet.

Beschaffenheit des Untergrundes

Auswahl und Eignung einer Versickerungsanlage hängen von der Beschaffenheit der ungesättigten Bodenzonen ab. Für eine ausschließliche Versickerung ohne zusätzliche Ableitungsmöglichkeiten, muss der Durchlässigkeitsbeiwert der aufnehmenden Bodenschichten mindestens 1*10-6 m/s betragen.

Im Zuge der Feldarbeiten vom 24.10.2023 wurden insgesamt 15 Rammkernsondierungen bis in eine maximale Tiefe von 7,0 m unter Geländeoberkante (GOK) durch die Fa. Baugrunderkundung Nord (Heerenholz 18, Bremen) im Auftrag der WCE abgeteuft.

Der Oberboden besteht aus humosen Schluffen, Sanden und Wurzelresten. Darunter befindet sich eine Torfschicht, die zwischen 1,6 m bis 2,7 m mächtig ist. Die Torfschichten sind teilweise von einer Kleischicht unterlagert. Darunter folgen bis zur maximalen Endteufe gewachsene Sande, bestehend aus Fein bis Mittelsand.

Bei den geotechnischen Untersuchungen wurden in den offenen Bohrlöchern Wasserstände zwischen 0,5 m und 1,1 m unter Geländeoberkante gemessen (+15,99 m NHN und +18,13 m NHN).

Eine vollständige entwässerungstechnische Versickerung ist aufgrund des zeitweise nah anstehenden Grundwasserpegels nicht möglich.

Folglich ist die Umsetzbarkeit einer entwässerungstechnischen Versickerungsanlage aufgrund des relativ hohen Grundwasserstandes nicht gegeben.

2.3 Regenrückhalteraum

Für die Oberflächenentwässerung des neuen Vollsortimenter ist die Implementierung einer unterirdischen Regenrückhaltung vorgesehen. Zu diesem Zweck können Kunststofffüllkörper verwendet werden, die durch eine Folienabdichtung wasserundurchlässig gestaltet werden.

2.3.1 Bemessungsparameter

Die Dimensionierung des Regenrückhalteraums erfolgt in tabellarischer Form nach dem Arbeitsblatt DWA A 117 "Bemessung von Regenrückhalteräumen" (Ausgabe April 2012).

Folgende Parameter werden bei der Bemessung verwendet:

Angeschlossene Flächen

Das Planungsgebiet umfasst eine Fläche von ca. 8.100 m² für ein Vollsortimenter, Verkehrs- und Grünflächen. Davon sind 7.160 m² (88,3 %) befestigte Fläche und 948 m² unbefestigte Fläche (11,7 %). Die befestigte Fläche setzt sich aus Dachflächen, Straßen und Wegen zusammen.

Drosselabfluss

Für die Einleitung in das vorhandene Regenwasserkanalsystem wird eine mittlere Drosselabflussspende von 1,22 l/(s*ha) vorgesehen.

Fließzeit t_f

Es wird eine Fließzeit von t_f = 10 min für die Berechnung des Rückhaltevolumens angesetzt.

Zuschlagsfaktor fz

Das Ergebnis wird nach Tabelle 2 des Arbeitsblattes DWA A 117 mit dem Zuschlagsfaktor f_z = 1,15 multipliziert. Dies entspricht einem mittlerem Risikomaß in Hinblick auf eine Unterbemessung des Rückhaltevolumens.

Regenhäufigkeit n

Das erforderliche Beckenvolumen wird mit einer Häufigkeit n = 0,2 a⁻¹ bemessen. Dies entspricht statistisch einer Regenrückhaltebeckenfüllung bis zum max. Bemessungsstau in einer Zeitspanne von fünf Jahren.

Regenreihen

Die Niederschlagshöhen ergeben sich aus dem KOSTRA-Atlas des DWD (Deutscher Wetterdienst). Es wird der aktuelle KOSTRA-Atlas, KOSTRA-DWD-2020 4.1 von 2024 verwendet. Die Regenreihen sind im Anhang a) "Niederschlagshöhen – KOSTRA - DWD 2020 4.1 - Atlas des Deutschen Wetterdienstes" aufgeführt. Da die dort angegebenen Werte für Planungszwecke herangezogen werden, sind die Niederschlagshöhen bzw. die Niederschlagsspenden in Abhängigkeit von der Wiederkehrzeit mit einem entsprechenden Toleranzbetrag zu berücksichtigen.

2.3.2 Bemessung der Rückhalteeinrichtung

Zur Anwendung können Systeme verschiedener Hersteller kommen. Im Mittel besitzt ein Speicherelement die Maße 0,6 x 0,6 x 0,6 m (L x B x H) und verfügt somit über ein Volumen von 0,216 m³.

Um das Speichervolumen von 207 m³ zu gewährleisten, muss die Rückhaltung aus mindestens 975 Elementen bestehen.

Die Kastenelemente werden aufgrund der örtlichen Bestandshöhen (Anschlusshöhe / Sohle RW-Schacht) und der notwendigen Mindestüberdeckung 1-lagig im Erdreich als Rechteckfläche angeordnet. Das gesamte Kastensystem wird mit einer Kunststoffdichtungsbahn umhüllt, um die Rückhaltung des Oberflächenwassers zu gewährleisten.

Für die Bauausführung wurde eine Fläche von 9 m x 39 m = 351 m² gewählt. Dies entspricht 975 Kastenelementen, die über ein Rückhaltevolumen von 210,6 m³ verfügen.

Die Kästen können im östlichen Bereich des Planungsgebietes unter dem Parkplatz angeordnet. Die Parkplätze werden gepflastert.

2.4 Drosselbauwerk

2.4.1 Oberflächenentwässerung der Bestandsbebauung

Derzeit befindet sich auf den Bestandsflächen ein Gebäudekomplex sowie Parkplatzflächen, was einer befestigten Fläche von etwa 2.000 m² entspricht. Das dort anfallende Oberflächenwasser wird gegenwärtig ungedrosselt in das bestehende Regenwasserkanalnetz in der Flensbergstraße geleitet.

Aufgrund dieser begrenzten Kapazitäten wurden zunächst alternative Ableitungswege geprüft. Wie bereits in Punkt 2.2 beschrieben, ist aufgrund des oberflächennah anstehenden Grundwassers eine Versickerung nicht realisierbar. Eine Möglichkeit wäre eine Ableitung in den nördlich gelegenen Straßenseitengraben der Landesstraße. Jedoch erweist sich dies aufgrund der Höhenverhältnisse als technisch und baulich nicht umsetzbar.

Somit bleibt nur die Option, das Oberflächenwasser in das bestehende Regenwasserkanalnetz in der Flensbergstraße einzuleiten. Um das bestehende System jedoch nicht durch eine zusätzliche Versiegelung der Flächen zu belasten, ist eine Rückhaltung des anfallenden Oberflächenwassers auf dem Grundstück vorzusehen und entsprechend gedrosselt in das Netz einzuleiten.

2.4.2 Dimensionierung der Drossel

Das anfallende Oberflächenwasser im Gebiet des neuen Vollsortimenter soll gedrosselt in das bestehende Kanalnetz eingeleitet werden. Dies wird durch eine entsprechende Drossel kurz vor der Einleitstelle in das bestehende Netz erreicht. Mit einer Drosselabflussspende von 1,50 l/s*ha resultiert ein tatsächlicher Drosselabfluss von 1,22 l/s.

Unter Berücksichtigung der aktuellen befestigten Fläche im Bestand von etwa 2.000 m², die ungedrosselt in das Netz entwässert wird, ergibt sich bei einem angenommenen Bemessungsregen von 182 l/s*ha (r=15min, 5a) ein Abfluss von 36,4 l/s. Somit führt die Drosselung des anfallenden Oberflächenwassers im Plangebiet nicht zu einer Verschlechterung der Situation, sondern sogar zu einer deutlichen Verbesserung.

Die Dimensionierung der Drossel und die genaue bauliche Ausgestaltung werden im Rahmen der Entwässerungsgenehmigung festgelegt. Hierfür ist ein separater Entwässerungsantrag zu erstellen.

2.5 Niederschlagswasserbehandlung

Mit Datum Dezember 2020 ist das Arbeitsblatt DWA-A 102/BWK-A 3 "Grundsätze zur Bewirtschaftung und Behandlung von Regenwetterabflüssen zur Einleitung in Oberflächengewässer" erschienen. Im Oktober 2021 wurde bereits eine korrigierte Fassung der DWA-A 102/BWK-A 3 veröffentlicht. Die Richtlinie wurde gemeinsam von der Deutschen Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. (DWA) und dem Bund der Ingenieure für Wasserwirtschaft, Abfallwirtschaft und Kulturbau e. V. (BWK) verfasst. Die DWA-A 102/BWK-A 3 löst das bisherige Arbeitsblatt ATV-A 128 "Richtlinien für die Bemessung und Gestaltung von Regenentlastungsanlagen in Mischwasserkanälen" sowie das Merkblatt DWA-M 153 "Handlungsempfehlung zum Umgang mit Regenwasser" in Bezug auf die Einleitung in Oberflächengewässer ab.

Das Arbeitsblatt DWA-A 102 widmet sich dem Gewässerschutz mit Fokussierung auf niederschlagsbedingte Siedlungsabflüsse und ihre Einleitung in oberirdische Gewässer. Demnach müssen Stoffeinträge durch

Niederschlagswasser von belasteten, verschmutzten Flächen vermieden bzw. begrenzt werden. Ziel ist es, die Feststoffe, welche sich im Niederschlagswasser von verschmutzen Flächen befinden, vor Einleitung in oberirdische Gewässer abzuscheiden. Zur Feststellung des Feststoffaufkommens wird gemäß DWA-A 102/BWK-A 3 eine Bewertung des Niederschlagswassers durchgeführt. Wie stark das Niederschlagswasser an einer Einleitstelle verschmutzt ist, hängt von der Herkunft des Niederschlagswassers und den dort charakteristischen Belastungsquellen ab. Anschließend folgt eine Prüfung bei der ermittelt wird, ob eine Behandlung des Niederschlagswassers notwendig ist. Bei Überschreiten des zulässigen Feststoffgehaltes, ist eine entsprechende Behandlung des Niederschlagswassers erforderlich.

Eine erste vorläufige Bewertung des Niederschlagswassers der befestigten Flächen des betrachteten, geplanten neuen Vollsortimenter wurde gemäß DWA-A 102/BWK-A 3 durchgeführt. Dabei wurden sämtliche befestigte Flächen, welche am Kanalsystem angeschlossen sind in ihrer Flächennutzung bewertet. Es ist davon auszugehen, dass durch die neu versiegelten Verkehrsflächen (Fahrwege, Stellplätze, Anlieferung), eine Belastung für das Niederschlagswasser bzw. für die Gewässer darstellt. Daher resultiert aus der Bewertung ein flächenspezifischer Stoffabtrag von max. 306 kg/ha*a. Folglich wird der maximal zulässige flächenspezifische Stoffabtrag von 280 kg/(ha*a) überschritten und die Einleitung in ein oberirdisches Gewässer ist ohne Behandlung des Niederschlagswassers nicht möglich. Eine Regenwasserbehandlungsanlage für den neuen Vollsortimenter ist somit gemäß DWA-A 102/BWK-A 3 sehr wahrscheinlich notwendig.

3. Schmutzwasserentwässerung

Die Schmutzwasserentwässerung im Plangebiet fällt in den Zuständigkeitsbereich des Trink- und Abwasserverbandes Bourtanger Moor. Dieser Verband ist verantwortlich für die Sammlung, Ableitung und Aufbereitung des anfallenden Schmutzwassers gemäß den geltenden wasserrechtlichen Vorgaben und technischen Standards.

Im Rahmen des vorliegenden Oberflächenentwässerungskonzepts wird ausschließlich der Ableitung und Rückhaltung des anfallenden Regenwassers betrachtet. Die Schmutzwasserentsorgung bleibt hiervon unberührt und wird nicht in die Planung oder Umsetzung der hier vorgesehenen Maßnahmen einbezogen.

Die bestehenden Entwässerungsstrukturen für Schmutzwasser bleiben somit unverändert bestehen und werden weiterhin im bisherigen Umfang durch den zuständigen Verband betreut und betrieben.

4. Zusammenfassung

Das Oberflächenentwässerungskonzept für den neuen Vollsortimenter beinhaltet die Anlage verschiedener entwässerungstechnischer Einrichtungen (Regenwasserkanal, Rückhaltekästen, Drosseleinrichtung). Das Rückhaltevolumen wurde so groß gewählt, dass bei dem angesetzten 5-jährlichen Bemessungsregen kein zusätzliches Oberflächenwasser, im Vergleich zum natürlichen landwirtschaftlichen Abfluss, abgeleitet wird.

Die Entwässerungssysteme außerhalb des Plangebietes, wurden im Konzept berücksichtigt und in die Planung miteinbezogen.

Das Konzept wird im Rahmen der Bauleitplanung erstellt und stellt keinen Genehmigungsantrag dar. Im Rahmen der Erschließungsplanung ist das aufgestellte Oberflächenentwässerungskonzept zu konkretisieren.

Die Einleitung von Niederschlagswasser in ein Gewässer oder in den Untergrund ist gemäß des Wasserhaushaltsgesetz (WHG) genehmigungspflichtig und muss bei der zuständigen Genehmigungsbehörde beantragt werden.

Schortens, Februar 2025

Aufgestellt: B. Eng. Jörg Büsing

B. Eng. Jörg Büsing

Dipl.-Ing. (FH) Horst Rolfs

Gemeinde Twist: OEK - Neubau eines Vollsortimenters	PNr. 2741
Anhang a	
Niederschlagshöhen - KOSTRA - DWD 2020 4.1 - Atlas d	les Deutschen
Wetterdienstes	

KOSTRA-DWD 2020

Nach den Vorgaben des Deutschen Wetterdienstes - Hydrometeorologie -

Niederschlagshöhen nach **KOSTRA-DWD 2020**

INDEX_RC Rasterfeld : Spalte 104, Zeile 102 : 102104

Bemerkung

Dauerstufe D			Niede	erschlagshöhen	hN [mm] je Wie	ederkehrinterva	II T [a]		
	1 a	2 a	3 a	5 a	10 a	20 a	30 a	50 a	100 a
5 min	6,8	8,6	9,6	11,1	13,1	15,3	16,6	18,5	21,1
10 min	8,8	11,1	12,5	14,4	17,1	19,8	21,6	24,0	27,4
15 min	10,1	12,7	14,3	16,4	19,5	22,6	24,7	27,4	31,2
20 min	11,0	13,8	15,6	17,9	21,2	24,7	26,9	29,8	34,1
30 min	12,3	15,5	17,5	20,1	23,8	27,7	30,2	33,5	38,2
45 min	13,8	17,3	19,5	22,4	26,6	30,9	33,7	37,4	42,7
60 min	14,8	18,7	21,1	24,2	28,7	33,3	36,3	40,3	46,0
90 min	16,5	20,7	23,4	26,8	31,8	36,9	40,3	44,7	51,0
2 h	17,7	22,3	25,1	28,8	34,2	39,7	43,3	48,1	54,9
3 h	19,6	24,6	27,8	31,9	37,8	43,9	47,9	53,2	60,7
4 h	21,0	26,4	29,8	34,2	40,6	47,1	51,4	57,1	65,1
6 h	23,2	29,2	32,9	37,8	44,8	52,0	56,8	63,0	71,9
9 h	25,6	32,2	36,3	41,7	49,4	57,4	62,7	69,5	79,4
12 h	27,4	34,5	38,9	44,7	53,0	61,6	67,2	74,5	85,1
18 h	30,3	38,1	42,9	49,3	58,5	67,9	74,1	82,2	93,8
24 h	32,4	40,8	46,0	52,8	62,7	72,8	79,4	88,1	100,6
48 h	38,3	48,3	54,4	62,4	74,1	86,0	93,9	104,1	118,9
72 h	42,3	53,2	60,0	68,8	81,6	94,8	103,5	114,8	131,0
4 d	45,3	57,0	64,3	73,8	87,5	101,6	110,9	123,0	140,4
5 d	47,8	60,2	67,8	77,8	92,3	107,2	117,0	129,8	148,2
6 d	49,9	62,9	70,8	81,3	96,5	112,1	122,3	135,6	154,8
7 d	51.8	65.2	73.5	84.4	100.1	116.3	126.9	140.8	160.7

Legende

Т Wiederkehrintervall, Jährlichkeit in [a]: mittlere Zeitspanne, in der ein Ereignis einen Wert einmal erreicht oder

D Dauerstufe in [min, h, d]: definierte Niederschlagsdauer einschließlich Unterbrechungen

hΝ Niederschlagshöhe in [mm]

KOSTRA-DWD 2020

Nach den Vorgaben des Deutschen Wetterdienstes - Hydrometeorologie -

Niederschlagsspenden nach **KOSTRA-DWD 2020**

INDEX_RC Rasterfeld : Spalte 104, Zeile 102 : 102104

Bemerkung

Dauerstufe D			Nieders	schlagspenden	rN [l/(s·ha)] je V	Viederkehrinter	/all T [a]		
	1 a	2 a	3 a	5 a	10 a	20 a	30 a	50 a	100 a
5 min	226,7	286,7	320,0	370,0	436,7	510,0	553,3	616,7	703,3
10 min	146,7	185,0	208,3	240,0	285,0	330,0	360,0	400,0	456,7
15 min	112,2	141,1	158,9	182,2	216,7	251,1	274,4	304,4	346,7
20 min	91,7	115,0	130,0	149,2	176,7	205,8	224,2	248,3	284,2
30 min	68,3	86,1	97,2	111,7	132,2	153,9	167,8	186,1	212,2
45 min	51,1	64,1	72,2	83,0	98,5	114,4	124,8	138,5	158,1
60 min	41,1	51,9	58,6	67,2	79,7	92,5	100,8	111,9	127,8
90 min	30,6	38,3	43,3	49,6	58,9	68,3	74,6	82,8	94,4
2 h	24,6	31,0	34,9	40,0	47,5	55,1	60,1	66,8	76,3
3 h	18,1	22,8	25,7	29,5	35,0	40,6	44,4	49,3	56,2
4 h	14,6	18,3	20,7	23,8	28,2	32,7	35,7	39,7	45,2
6 h	10,7	13,5	15,2	17,5	20,7	24,1	26,3	29,2	33,3
9 h	7,9	9,9	11,2	12,9	15,2	17,7	19,4	21,5	24,5
12 h	6,3	8,0	9,0	10,3	12,3	14,3	15,6	17,2	19,7
18 h	4,7	5,9	6,6	7,6	9,0	10,5	11,4	12,7	14,5
24 h	3,8	4,7	5,3	6,1	7,3	8,4	9,2	10,2	11,6
48 h	2,2	2,8	3,1	3,6	4,3	5,0	5,4	6,0	6,9
72 h	1,6	2,1	2,3	2,7	3,1	3,7	4,0	4,4	5,1
4 d	1,3	1,6	1,9	2,1	2,5	2,9	3,2	3,6	4,1
5 d	1,1	1,4	1,6	1,8	2,1	2,5	2,7	3,0	3,4
6 d	1,0	1,2	1,4	1,6	1,9	2,2	2,4	2,6	3,0
7 d	0.9	1.1	1.2	1.4	1.7	1.9	2.1	2.3	2.7

Legende

Т Wiederkehrintervall, Jährlichkeit in [a]: mittlere Zeitspanne, in der ein Ereignis einen Wert einmal erreicht oder

D Dauerstufe in [min, h, d]: definierte Niederschlagsdauer einschließlich Unterbrechungen

rΝ Niederschlagsspende in [l/(s·ha)]

KOSTRA-DWD 2020

Nach den Vorgaben des Deutschen Wetterdienstes - Hydrometeorologie -

Toleranzwerte der Niederschlagshöhen und -spenden nach KOSTRA-DWD 2020

INDEX_RC Rasterfeld : Spalte 104, Zeile 102 : 102104

Bemerkung

Dauerstufe D			Tol	eranzwerte UC	je Wiederkehrir	ntervall T [a] in [:	£%]		
	1 a	2 a	3 a	5 a	10 a	20 a	30 a	50 a	100 a
5 min	12	13	14	15	16	17	17	17	18
10 min	14	16	17	18	20	21	21	22	22
15 min	16	18	19	20	22	23	23	24	25
20 min	17	19	20	21	23	24	24	25	26
30 min	17	20	21	22	24	25	25	26	27
45 min	17	20	21	22	24	25	25	26	27
60 min	17	20	21	22	24	25	25	26	27
90 min	16	19	20	21	23	24	24	25	26
2 h	16	18	20	21	22	23	24	24	25
3 h	15	17	18	20	21	22	23	23	24
4 h	14	17	18	19	20	21	22	22	23
6 h	13	16	17	18	19	20	21	21	22
9 h	13	15	16	17	18	19	20	20	21
12 h	13	14	15	16	18	19	19	20	20
18 h	13	14	15	16	17	18	18	19	19
24 h	13	14	15	16	17	18	18	18	19
48 h	15	15	15	16	17	17	18	18	19
72 h	16	16	16	17	17	18	18	18	19
4 d	17	17	17	17	18	18	18	19	19
5 d	18	18	18	18	18	19	19	19	19
6 d	19	19	18	19	19	19	19	19	20
7 d	20	19	19	19	19	19	20	20	20

Legende

Т Wiederkehrintervall, Jährlichkeit in [a]: mittlere Zeitspanne, in der ein Ereignis einen Wert einmal erreicht oder

D Dauerstufe in [min, h, d]: definierte Niederschlagsdauer einschließlich Unterbrechungen

UC Toleranzwert der Niederschlagshöhe und -spende in [±%]

Anhang b

Bemessung von Regenrückhalteräumen nach DWA-A 117

Bemessung von Regenrückhalteräumen nach dem Arbeitsblatt DWA-A 117

1. Bemessung	sgrundlagen:								
Fläche des kana	alisierten Einzug	sgebietes				A _{E,k} =	0,811	ha	
befestigte Fläch	ie					A _{E,b} =	0,525	ha	
unbefestigte Flä	iche					A _{E,nb} =	0,285	ha	
mittlerer Abfluss	y _{m,b} =	0,83	-						
mittlerer Abfluss	sbeiwert der unb	efestigten Fläch	ie			y _{m,nb} =	0,05	-	
Trockenwettera	bfluss					Q _{T,d,aM} =	0	l/s	
vorgegebene D	rosselabflusssp	ende				q _{Dr,k} =	1,50	l/(s*ha)	
vorgegebene Ü	berschreitungsh	äufigkeit				n =	0,2	1/a	
2. Ermittlung der für die Berechnung maßgebenden "undurchlässigen" Fläche A _u :									
$A_{u} = A_{E,b} * y_{m,b} + A_{E,nb} * y_{m,nb}$ $A_{u} = A_{E,b} * y_{m,b} + A_{E,nb} * y_{m,nb}$								ha	
3. Ermittlung der Drosselabflussspenden:									
$Q_{Dr,max} = q_{Dr,k} * A_{E,k}$ $Q_{Dr,max} = 1,22$ I/s									
$q_{Dr,R,u} = (Q_{Dr} - Q_{Dr})$	(_{T,d,aM}) / A _u					q _{Dr,R,u} =	2,71	l/(s*ha)	
4. Ermittlung d	es Abminderui	ngsfaktors f _A :							
mit der Fließzei	t					t _f =	10	min	
und der Häufigk	æit					n =	0,20	1/a	
ergibt sich nach	den Formeln de	es Anhangs B d	er Abminderung	sfaktor		f _A =	0,999	-	
5. Festlegung	des Zuschlagsf	aktors f _z :							
Der Zuschlagsfa	aktor wird gewäl	nlt für ein mittler	es Risikomaß z	J		f _Z =	1,15	-	
6. Anwendung	von Gleichung	2 für ausgewä	hlte Dauerstuf	en:					
	_{R,u}) * D * f _Z * f _A *								
Dauer- stufe	Dauer- Nieder- Regen- Toleranz- Bemessungs- Drossel- Differenz spezifisches								

Dauer-	Nieder-	Regen-	Toleranz-	Bemessungs-	Drossel-	Differenz	spezifisches
stufe	schlags-	spende	wert nach	regenspende	abfluss-	zw. r _{B,n}	Speichervolumen
	höhe		Kostra-DWD		spende	und	
D	hN	r _{D,n}	2020 4.1	r _{B,n}	$\mathbf{q}_{Dr,R,u}$	q _{Dr,R,u}	$V_{s,u}$
[min]	[mm]	[l/s*ha]	[%]	[l/s*ha]	[l/s*ha]	[l/s*ha]	[m³/ha]
45	22,4	83,0	22,0	101,3	2,7	98,6	306
60	24,2	67,2	22,0	82,0	2,7	79,3	328
90	26,8	49,6	21,0	60,0	2,7	57,3	355
120	28,8	40,0	21,0	48,4	2,7	45,7	378
180	31,9	29,5	20,0	35,4	2,7	32,7	405
240	34,2	23,8	19,0	28,3	2,7	25,6	423
360	37,8	17,5	18,0	20,7	2,7	18,0	446
540	41,7	12,9	17,0	15,1	2,7	12,4	461
720	44,7	10,3	16,0	11,9	2,7	9,2	456
1080	49,3	7,6	16,0	8,8	2,7	6,1	453
1440	52,8	6,1	16,0	7,1	2,7	4,4	436
Größtwert bei	540 min			Erforderlich	es spezifisches	Volumen $V_{s,u}$ =	461 m³/ha

Bestimmung des erforderlichen Rückhaltevolumens nach Gleichung 3:										
$V = V_{s,u} * A_u =$	461 m³/ha * 0,45 ha	V =	207	m³						
Entleerungszeit des Beckens										
$t_E = V_{erf} / Q_{Dr,max} =$	207 m³ / (1,22 / 1000 * 60 * 60)	t _{E =}	47,13	Std						

Anhang c Bestimmung des Abflussbeiwertes nach DWA-A 138

Gemeinde Twist: OEK - Neubau eines Vollsortimenters

Bestimmung des Abflussbeiwertes nach DWA-A 138, ATV-DVWK-A 117 und ATV-DVWK-M 153

Auftraggeber: Gemeinde Twist

Projektbezeichnung: OEK Neubau eines Vollsortimenters

Projektnummer: 2741

Gesamtgröße des kanalisierten Einzugsgebiets (A_{E,k})

8.108 m²

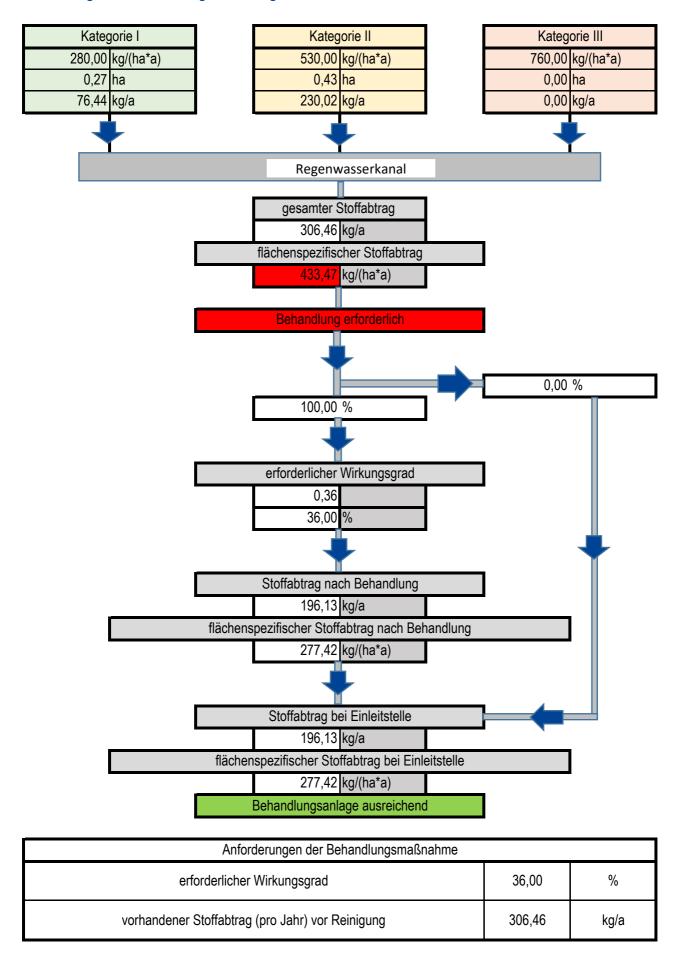
Eb	ene 1		Ebene 2	Ebene 3			Ebene 4					
Flächentyp	Anteil		Flächentyp	Anteil a	a. d. Obergr.	Flächentyp	Anteil a	a. d. Obergr.	Flächentyp	Abflussbeiwert (ψ)	Anteil a	. d. Obergr.
	proz.	absolut		proz.	absolut	,	proz.	absolut			proz.	absolut
befestigten Fläche	88,3 %	7.160 m²	Dachfläche	38 %	2.723 m²	Schrägdach	0 %	0 m²	Metall, Glas, Schiefer, Faserzement Ziegel, Dachpappe	0,95 0,90	0 % 0 %	0 m² 0 m²
									Restwert (muss 0 % sein)		100 %	
						Flachdach	100 %	2.723 m²	Metall, Glas, Faserzement Dachpappe Kies	0,95 0,90 0,70	100 % 0 % 0 %	2.723 m ² 0 m ² 0 m ²
									Restwert (muss 0 % sein)		0 %	
						Gründach	0 %	0 m²	humisiert < 10 cm Aufbau humisiert > 10 cm Aufbau	0,50 0,30	0 % 0 %	0 m² 0 m²
						Restwert (muss 0 % sein)	0 %		Restwert (muss 0 % sein)		100 %	
			Straßen, Wege, Plätze (flach)	62 %	4.437 m²				Asphalt, fugenloser Beton Pflaster mit dichten Fugen fester Kiesbelag	0,90 0,75 0,60	4,42 % 95,6 % 0 %	196 m² 4.241 m² 0 m²
									Pflaster mit offenen Fugen lockerer Kiesbelag, Schotterrasen Verbundsteine mit Fugen, Sickersteine	0,50 0,50 0,30 0,25 0.15	0 % 0 % 0 % 0 %	0 m ² 0 m ² 0 m ² 0 m ²
			Restwert (muss 0 % sein)	0 %					Rasengittersteine Restwert (muss 0 % sein)	0,15	0 %	U III²
unbefestigten Fläche	11,7 %	948 m²	Böschungen, Bankette und Gräben mit Regenabfluss in das Entwässerungssystem	0 %	0 m²				toniger Boden Lehmiger Sandboden Kies und Sandboden Restwert (muss 0 % sein)	0,50 0,40 0,30	0 % 0 % 0 % 100 %	0 m² 0 m² 0 m²
			Gärten, Weiden und Kulturland mit mit Regenabfluss in das in das Entwässerungssytem	100 %	948 m²				flaches Gelände steiles Gelände	0,05 0,20	100 %	948 m² 0 m²
			Restwert (muss 0 % sein)	0 %					Restwert (muss 0 % sein)		0 %	
Regenrückhaltung	- %	0 m ²	Regenrückhaltebecken	100 %	0 m ²			İ	Wasseroberfläche	1,00	100 %	0 m ²

Ergebnis (mittlere Abflussbeiwerte):	undurchlässige Fläche (ψ _{m,b})	:	0,83
	durchlässige Fläche (ψ _{m,nb})	:	0,05
	Mittelwert (ψ m)	:	0,74

Anhang d Bewertung von Niederschlagswasser nach dem Arbeitsblatt DWA-A 102/BWK-A 3

Überprüfung und Festlegung der Niederschlagsbehandlung

Auftraggeber: Kanne Group Investment AG


Projektbezeichnung: OEK - Neubau eines Vollsortimenter

Projektnummer: 2741

Zuteilung und Kategorisierung der Flächen gemäß DWA-A 102

	Fläche Ab e	davon								
Flächentyp	Fläche Ab,a	Kategorie I		Ka	tegorie II	Kategorie III				
	[ha]	[ha]	TYP	[ha]	TYP	[ha]	TYP			
Verkehrsflächen	0,44			0,43	V2	-	-			
Dachfläche	0,27	0,27	D	-	-	-	-			
-	-	-	-	-	-	-	-			
-	-	-	-	-	-	-	-			
Summenwerte	0,72		0,27	0,43		0,00				

Bewertung des Niederschlagswassers gemäß DWA-A 102

Bewertung des Niederschlagswassers gemäß DWA-A 102

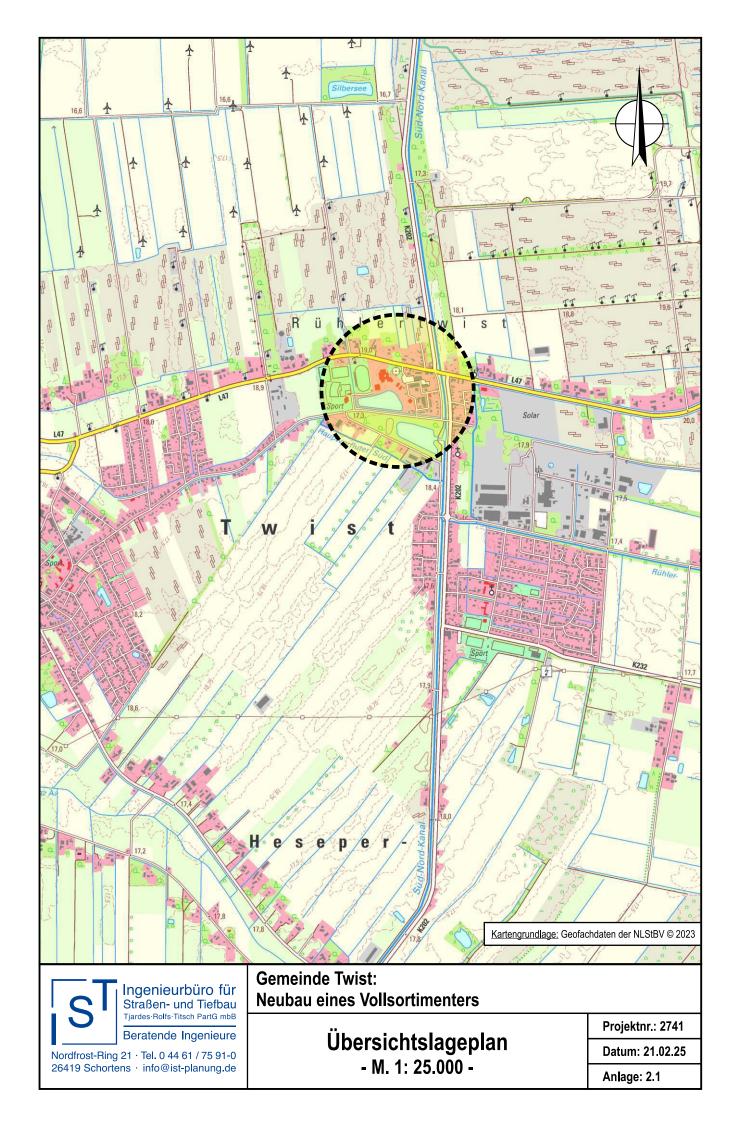
Aus der Kategorie I zugeteilten Fläche (0,27 ha) entsteht ein Stoffabtrag von 76,44 kg pro Jahr. Aus der Kategorie II zugeteilten Fläche (0,43 ha) ensteht ein Stoffabtrag von 230,02 kg pro Jahr und aus der Kategorie III zugeteilten Fläche (0,00 ha) ensteht ein Stoffabtrag von 0,00 kg pro Jahr.

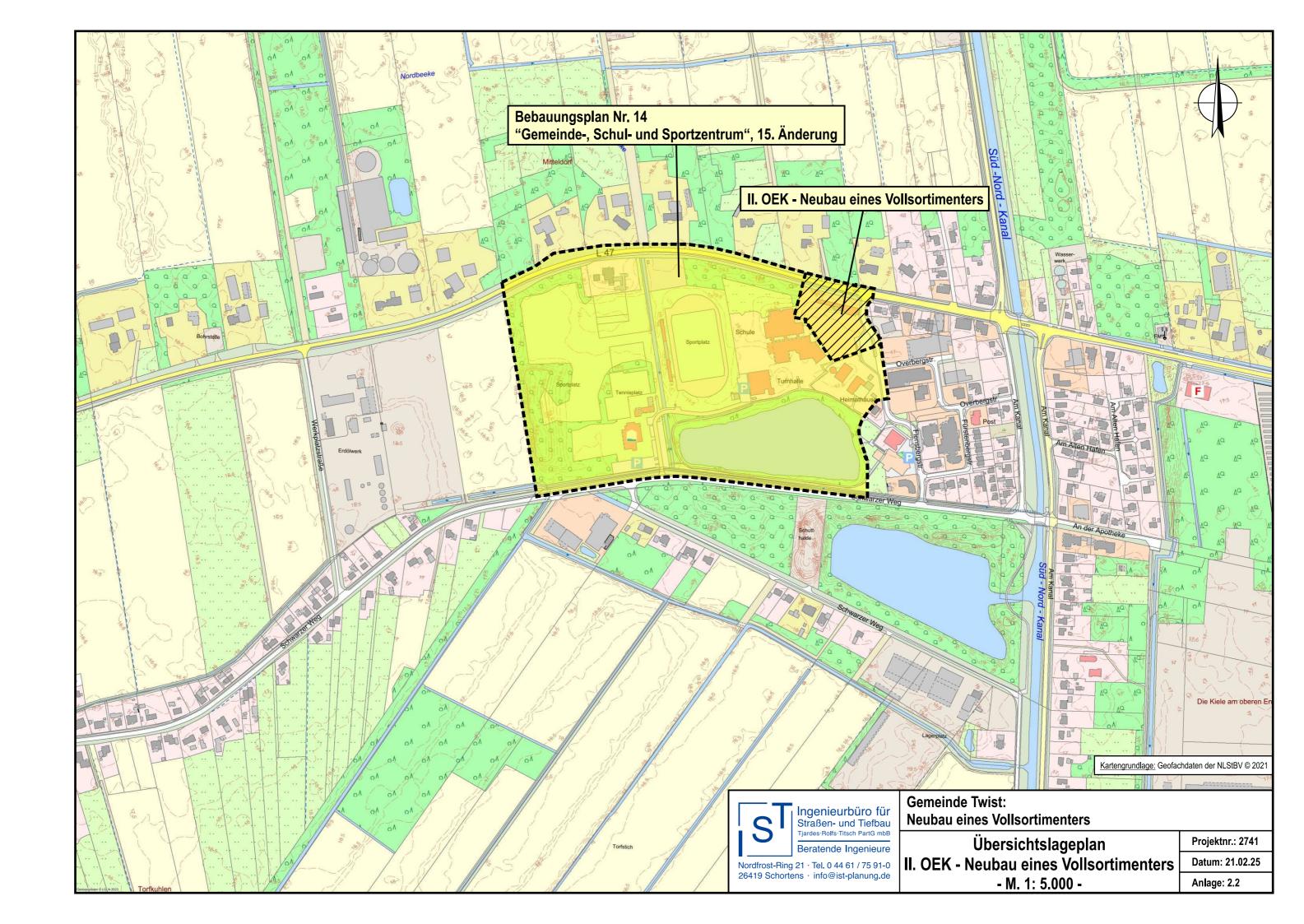
Aus dem untersuchten Einzugsgebiet resultiert ein gesamter Stoffabtrag von 306,46 kg pro Jahr. Um eine Prüfung der Behandlungsbedürftigkeit des Oberflächenwassers durchzuführen wird der gesamte Stoffabtrag [kg/a] durch die befestigte, angeschlossene Fläche [ha] dividiert. Daraus resultiert der flächenspezifische Stoffabtrag [kg/ha*a].

Der vorhandene flächenspezifische Stoffabtrag beträgt 433,47 kg pro ha und Jahr. Die DWA-A 102 gibt einen zulässigen flächenspezifischen Stoffabtrag von 280 kg pro ha und Jahr vor. Folglich ist eine Behandlung erforderlich.

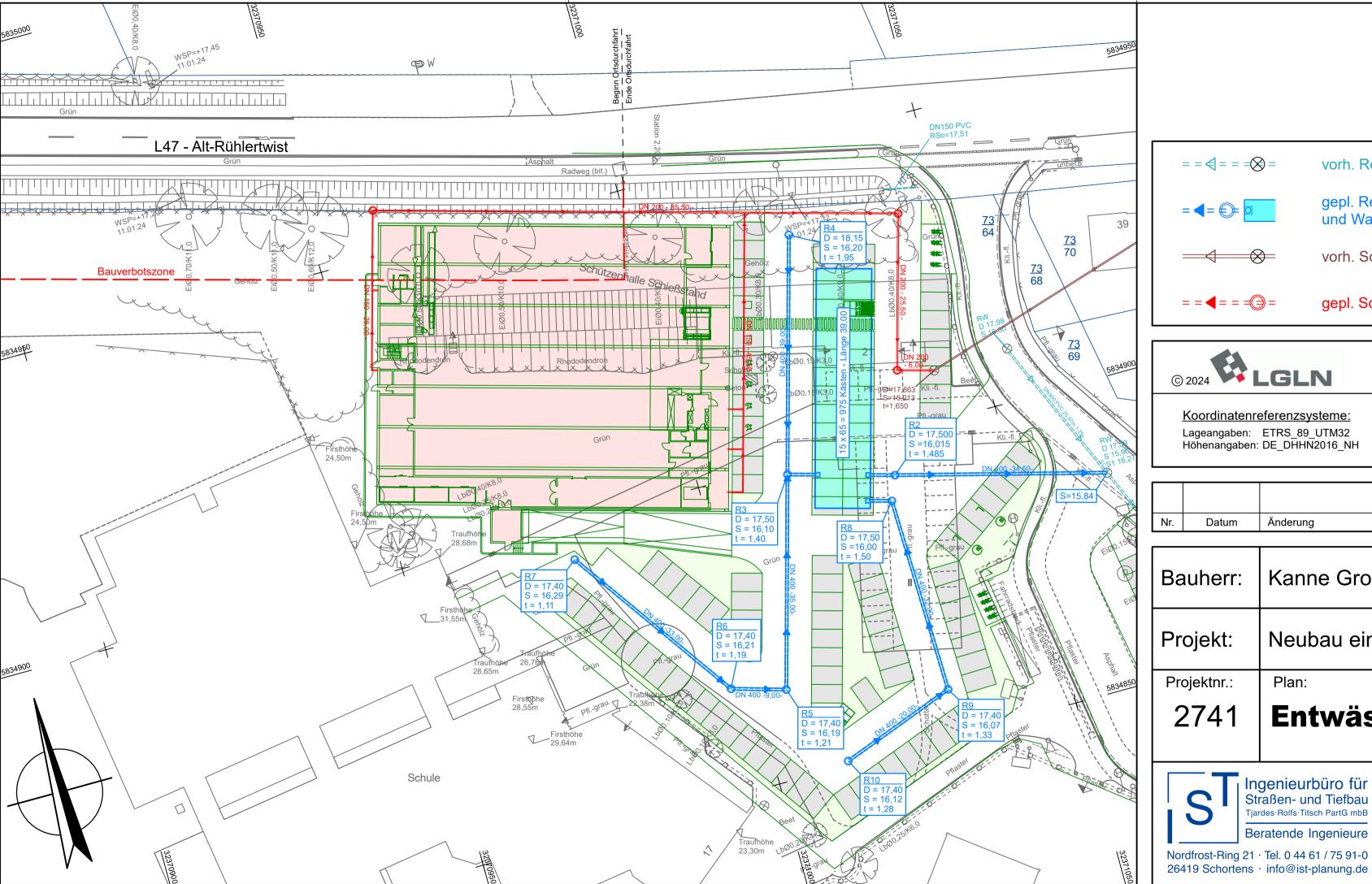
Gemäß der DWA-A 102 wird angenommen, dass infolge von hohen Starkregenereignissen ein Teil des Niederschlagswassers (BR,U) an der Behandlungsanlage vorbei fließt. Somit muss der Teilstrom der durch die Behandlungsanlage fließt (BR,in) etwas mehr gerinigt werden, um einen gewissen Puffer zu schaffen und den nicht behandelten Teilstrom (BR,U) an der Einleitstelle zu kompensieren.

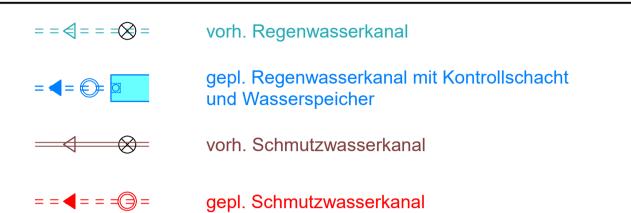
In diesem Fall wurde angenommen, dass 100,00 % des anfallenden Oberflächenwassers durch die Behandlungsanlage fließen und 0,00 % des anfallenden Oberflächenwassers an der Behandlungsanlage vorbei fließen.


Von dem anfallende Oberflächenwasser der Behandlungsanlage müssen 36,00 % der Feststoffe abgeschieden werden. Das gereinigte Oberflächenwasser enthählt ein flächenspezifischen Stoffabtrag von 277,42 kg pro ha und Jahr.


Hinzu kommt das nicht gereinigte Oberflächenwasser was die Behandlungsanlage umfließt. Daraus resultiert ein gesamter flächenspezifischer Stoffabtrag von 277,42 kg pro ha und Jahr.

Folglich ist die Behandlungsanlage ausreichend, da der zulässige flächenspezifische Stoffabtrag von 280 kg pro ha und Jahr nicht überschritten wird.


Gemeinde Twist Neubau eines Vollsortimenters Übersichten



Gemeinde Twist Neubau eines Vollsortimenters Pläne

Kataster:

Auszug aus den Geobasisdaten der Niedersächsischen Vermessungs- und Katasterverwaltung

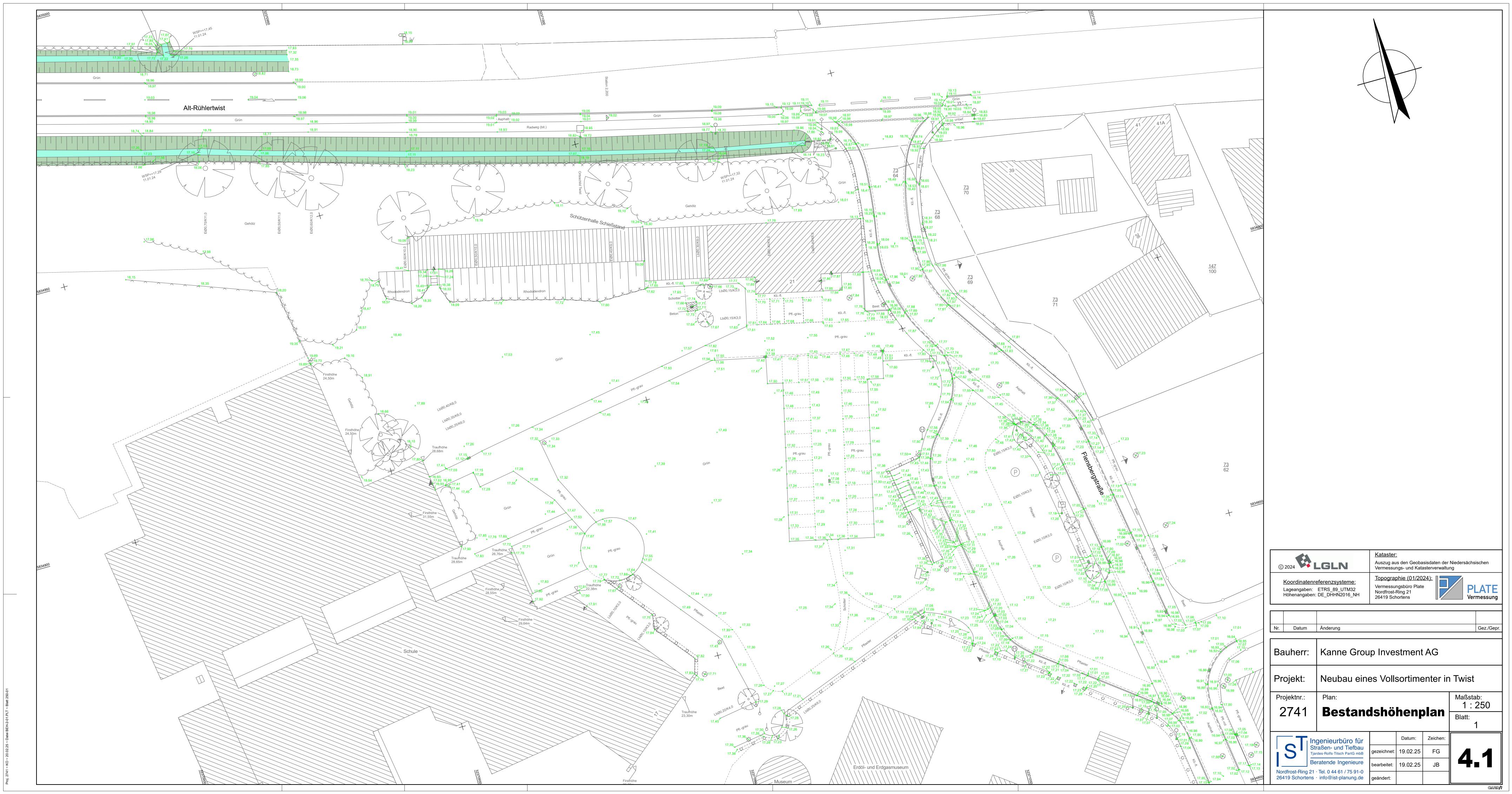
Koordinatenreferenzsysteme:

Lageangaben: ETRS_89_UTM32 Höhenangaben: DE_DHHN2016_NH

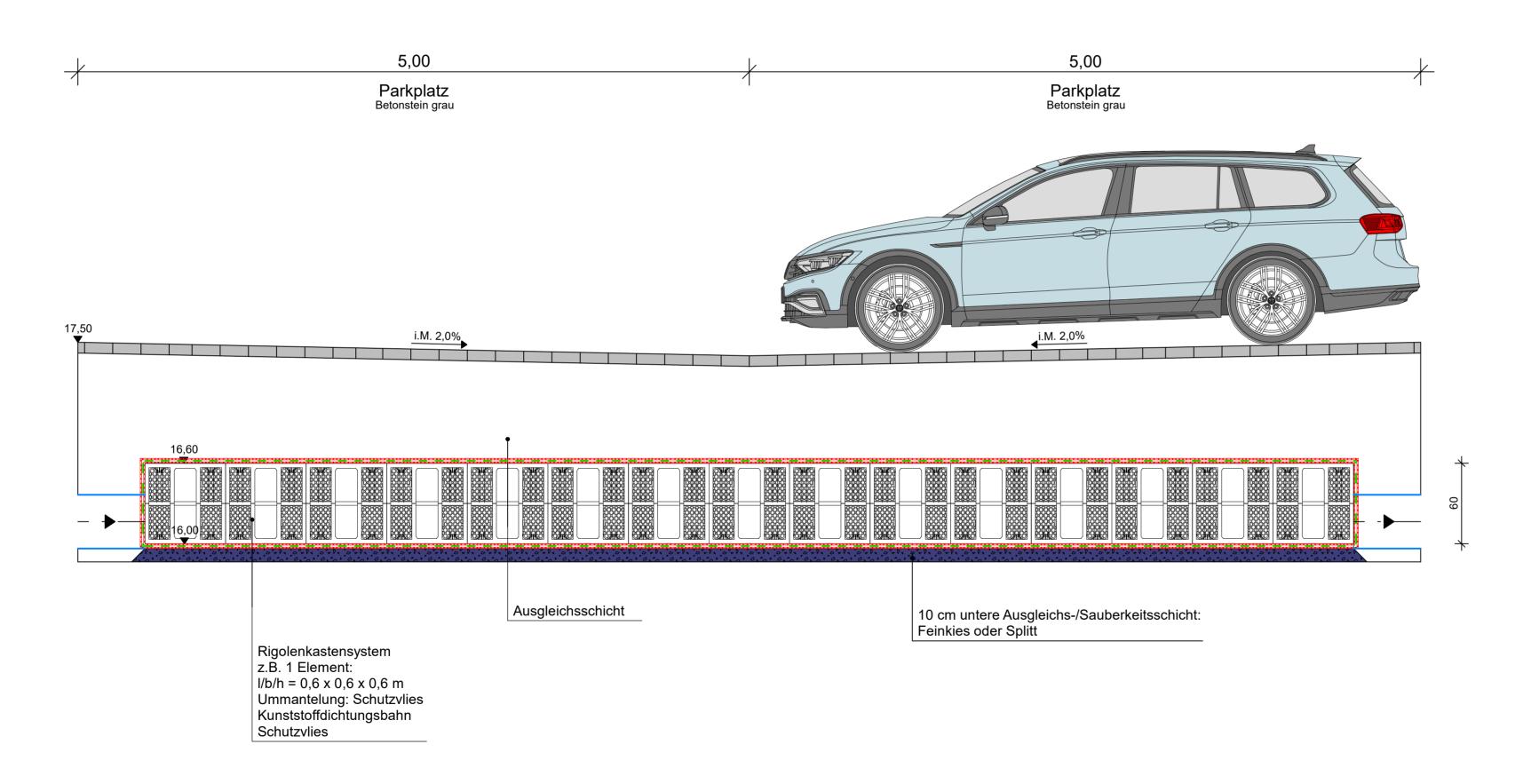
Topographie (01/2024):

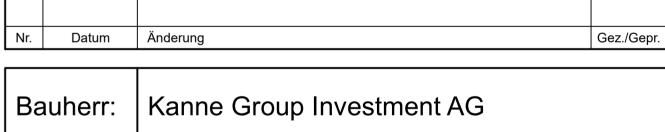
Vermessungsbüro Plate Nordfrost-Ring 21 26419 Schortens

Datum Änderung Gez./Gepi


Kanne Group Investment AG Bauherr: Projekt: Neubau eines Vollsortimenter in Twist Projektnr.: Plan: Maßstab: 1:500 2741

Entwässerungsplan


Blatt:



Zeichen: Datum: 19.02.25 NO/FG gezeichnet 19.02.25 earbeitet: geändert:

<u>Systemskizze</u>

ı		
	Projekt:	Neubau eines Vollsortimenter in Twist

	Projektnr.:
- 1	

2741

Systemskizze

1 : 25 Blatt:

Maßstab:

ST	Ingenieurbüro für Straßen- und Tiefbau Tjardes·Rolfs·Titsch PartG mbB			
	Beratende Ingenieure			
Nordfrost-Ring 21 · Tel. 0 44 61 / 75 91-0 26419 Schortens · info@ist-planung.de				

Plan:

	Datum:	Zeichen:	
zeichnet:	19.02.25	FG	
arbeitet:	19.02.25	MD	J.
indert:			

²roj. 2741 ∼ KO ∼ 20.02.25 ∼ Datei RQ-25-01.PLT ∘

III. Bereich-West, B-Plan Nr. 14 "Gemeinde-, Schul- und Sportzentrum" 15. Änderung

Oberflächenentwässerungskonzept

Auftraggeber Gemeinde Twist

Flensbergstraße 7 49767 Twist

Auftragnehmer Ingenieurbüro für Straßen- und Tiefbau Tjardes • Rolfs • Titsch PartG mbB

Nordfrost-Ring 21 26419 Schortens Tel.: 0 44 61 / 75 91 - 0 info@ist-planung.de

Projektbearbeitung B. Eng. Jörg Büsing

Karin Osterthun

Projektnummer 2741

Aufgestellt Februar 2025

III. Bereich-West, Bebauungsplan Nr. 14 "Gemeinde-, Schul- und Sportzentrum" 15. Änderung

Oberflächenentwässerungskonzept

Inhaltsverzeichnis

1. Erläuterungsbericht inkl. Anhänge

- a. Niederschlagshöhen KOSTRA DWD 2020 4.1– Atlas des Deutschen Wetterdienstes
- b. Bemessung von Regenrückhalteräumen nach DWA-A 117
- c. Bestimmung des Abflussbeiwertes nach DWA-A 138
- d. Bewertung von Niederschlagswasser nach dem Arbeitsblatt DWA-A 102/BWK-A 3
- e. Kartenauszug Wasserschutzgebiet
- f. Kartenauszug Gewässerkarte

2. Übersichten

 2.1 Übersichtskarte
 M. 1 : 25.000

 2.2 Übersichtslageplan
 M. 1 : 5.000

3. Entwässerungsplan

3.1. Oberflächenentwässerungskonzept M. 1: 500

4. Systemschnitt

4.1. Systemskizze Rückhaltegraben M. 1: 25

III. Bereich-West, Bebauungsplan Nr. 14 "Gemeinde-, Schul- und Sportzentrum" 15. Änderung

Erläuterungsbericht

Inhaltsverzeichnis

1.	Darste	ellung des Vorhabens	1
1.1	Vorh	nabenträger	1
1.2	Plan	verfasser	1
1.3	Aufg	gabenstellung	1
1.4	Bes	chreibung der Bestandssituation	1
1.5	Plar	erische Beschreibung	2
1.6	Lage	e des Untersuchungsgebietes	2
1.7	Verv	vendete Unterlagen	2
2.	Oberf	ächenentwässerung	3
2.1	Allge	emeines	3
2.2	Prüf	ung Versickerung	3
2.3	Reg	enrückhalteraum	4
	2.3.1	Bemessungsparameter	4
	2.3.2	Bemessung der Rückhalteeinrichtung	5
	2.3.3	Drosselabfluss	5
	2.3.4	Oberflächenentwässerung der Bestandsbebauung	5
	2.3.5	Dimensionierung der Drossel	5
2.4	Nied	lerschlagswasserbehandlung	6
3.	Schm	utzwasserentwässerung	6
4.	Zusan	nmenfassung	7

1. Darstellung des Vorhabens

1.1 Vorhabenträger

Vorhabenträger ist die Gemeinde Twist, Flensbergstraße 7, 49767 Twist, Tel.: 05936 / 93300.

1.2 Planverfasser

Planverfasser ist das Ingenieurbüro für Straßen- und Tiefbau Tjardes · Rolfs · Titsch PartG mbB mit Sitz am Nordfrost-Ring 21 in 26419 Schortens. Tel.: 04461/7591-0.

1.3 Aufgabenstellung

Die Gemeinde Twist erstellt den Bebauungsplan Nr. 14 "Gemeinde-, Schul- und Sportzentrum", 15. Änderung. In diesem Zusammenhang ist die Regelung der Oberflächenentwässerung für das Plangebiet erforderlich. Im Rahmen des Oberflächenentwässerungskonzepts soll die geplante Ableitung des anfallenden Oberflächenwassers dargestellt werden.

1.4 Beschreibung der Bestandssituation

Das Gebiet des Bebauungsplans Nr. 14 "Gemeinde-, Schul- und Sportzentrum", 15. Änderung umfasst eine Vielzahl an Einrichtungen, Wegestrukturen, Wasserflächen und Grünanlagen, die sich im Laufe der Zeit historisch entwickelt, angepasst und erweitert haben.

Begrenzt wird das Plangebiet im Norden durch die Landesstraße 47 (Alt-Rühlertwist) und im Süden durch die Gemeindestraße Schwarzer Weg. Die östliche Grenze bildet die Flensbergstraße, während im Westen eine Grünstruktur verläuft, die an die Sportplätze, den Dirt-Park und das Hallenbadgelände angrenzt.

Im östlichen Bereich befinden sich das Vereinshaus des Schützenvereins mit einem Schießstand, ein Schulkomplex sowie die Gemeindeverwaltung. Weiter östlich schließen sich ein Sportstadion und der Schulsee an. Zudem befinden sich dort eine Tennisanlage, das Hallenbad, sowie Rasenflächen, die als Trainingsareale genutzt werden.

Im nordwestlichen Teil des Plangebietes steht ein Privatgebäude. Der Schulsee ist von Parkflächen und Wegen umgeben, die eine funktionale und gestalterische Einbindung in das Gesamtkonzept des Areals ermöglichen.

Im Bestand verläuft die Nordbeeke durch das Plangebiet in Richtung Süden. Anschließend folgt sie zunächst dem Schwarzen Weg in westlicher Richtung, bevor sie auf Höhe des Lidl-Marktes die Straße nach Süden quert. Von dort wird das Oberflächenwasser über den Hauptvorfluter-Süd in den Süd-Nord-Kanal geleitet. Dieser führt das Wasser weiter nach Norden in den Haren-Rütenbrock-Kanal und schließlich in die Ems (Dortmund-Ems-Kanal). Im Anhang "f" ist der nähere Hauptentwässerungsweg aus dem B-Plan Gebiet in das weiterführende System dargestellt.

1.5 Planerische Beschreibung

Durch die Errichtung eines neuen Vollsortimenters im Bereich des bestehenden Vereinshauses des Schützenvereins mit Schießstand wird das Plangebiet des Bebauungsplans Nr. 14 "Gemeinde-, Schul- und Sportzentrum", 15. Änderung neu strukturiert. Innerhalb der Gemeindebedarfsfläche mit der Zweckbestimmung "kulturellen und sportlichen Zwecken dienende Gebäude und Einrichtungen" werden die bauplanungsrechtlichen Voraussetzungen für neue Mehrzweckgebäude der Gemeinde, örtlicher Vereine und ehrenamtlichen Einrichtungen geschaffen.

Die bestehende Tennisanlage wird zukünftig teilweise zurückgebaut, um auf diesen und umliegenden Fläche Gemeinbedarfsflächen für Sport und Kultur und Gebäude und Einrichtungen für den Gemeinbedarf zu schaffen.

Das bestehende Hallenbad mit seinen umliegenden Flächen wird ebenso in das neue Plangebiet integriert wie der Schulkomplex, die Gemeindeverwaltung und die Sporteinrichtungen, darunter das Stadion und die Trainingsflächen.

Zur verkehrlichen Erschließung ist eine Durchgangsstraße von der Landesstraße 47 bis zum Schwarzen Weg vorgesehen. Diese Verbindung ermöglicht eine optimale Anbindung der Einrichtungen. Darüber hinaus wird eine Fläche für gemeindliche Veranstaltungen geschaffen.

1.6 Lage des Untersuchungsgebietes

Das Untersuchungsgebiet umfasst den B-Plan Nr. 14 "Gemeinde-, Schul- und Sportzentrum", 15. Änderung in der Gemeinde Twist. (siehe Übersichten Anlage 2.1 und Anlage 2.2)

1.7 Verwendete Unterlagen

- Topographische Vermessung durch Vermessungsbüro Plate, Schortens, März 2024
- Entwurf B-Plan Nr. 14 Gemeinde-, Schul- und Sportzentrum", 15. Änderung, NWP Oldenburg, Januar
 2025
- Auszug aus den Geobasisdaten der Niedersächsischen Vermessungs- und Katasterverwaltung
- Niedersächsische Umweltkarten des Niedersächsischen Ministeriums für Umwelt, Energie und Klimaschutz

2. Oberflächenentwässerung

2.1 Allgemeines

Ein wesentliches Anliegen moderner Siedlungsentwässerung ist es, Niederschlagswasser von befestigten Flächen weitestgehend in den natürlichen Wasserkreislauf zurückzuführen.

Niederschlagswasser sollte möglichst am Ort des Anfalles entsorgt werden. Gemäß dem Wasserhaushaltsgesetz ist eine Regenwasserversickerung allen anderen Entsorgungsvarianten vorzuziehen. Hierdurch wird eine Grundwasserneubildung gefördert.

Ist eine Versickerung des Niederschlagswassers nicht möglich bzw. gestattet, so ist eine geregelte Ableitung, Rückhaltung und Behandlung vorzusehen.

2.2 Prüfung Versickerung

Gemäß des Arbeitsblattes DWA-A 138 erfolgte die Überprüfung der Umsetzbarkeit einer entwässerungstechnischen Versickerung. Diese ergab, dass eine Versickerung im Planungsgebiet nicht realisierbar ist.

Grundwasserflurabstand

Der Abstand von der Sohle der Versickerungsanlage zum mittleren höchsten Grundwasserstand sollte, gemäß DWA-A 138, größer als 1,0 m sein.

Ein Bodengrundgutachten im Bereich des Planungsgebietes wurde im Januar 2025 durch das rasteder erdbaulabor GmbH & Co. KG, Ingenieurbüro für Geotechnik aus 26180 Rastede durchgeführt. Bei den geotechnischen Untersuchungen wurde Grundwasser in Tiefen von 0,40 m bis 1,20 m unter Geländeoberkante festgestellt.

Wasserschutzgebiet

Das Versickern von gesammelten Niederschlagswasser ist in den Zonen I und II der Wasserschutzgebiete i.d.R. nicht zulässig.

Anhand der Umweltkarten des Niedersächsischen Ministeriums für Umwelt, Energie und Klimaschutz ist bekannt, dass das Planungsgebiet sich nicht im Trinkwasserschutzgebiet befindet. (siehe Anhang "e")

Beschaffenheit des Untergrundes

Auswahl und Eignung einer Versickerungsanlage hängen von der Beschaffenheit der ungesättigten Bodenzonen ab. Für eine ausschließliche Versickerung ohne zusätzliche Ableitungsmöglichkeiten, muss der Durchlässigkeitsbeiwert der aufnehmenden Bodenschichten mindestens 1*10-6 m/s betragen.

Im Zuge der Feldarbeiten vom 22.01.2025 wurden insgesamt 12 Rammkernsondierungen bis in eine maximale Tiefe von 5,0 m unter Geländeoberkante (GOK) durch das rasteder erdbaulabor abgeteuft.

Der Oberboden besteht aus humosen schluffigen Sanden. Darunter befindet sich fein- und schluffig Mittelsande und Torfe, die zwischen 0,1 m bis 2,4 m mächtig sind. Darunter folgen bis zur maximalen Endteufe gewachsene Sande, bestehend aus Fein bis Mittelsand.

Bei den geotechnischen Untersuchungen wurden in den offenen Bohrlöchern Wasserstände zwischen 0,4 m und 1,20 m unter Geländeoberkante gemessen.

Eine vollständige entwässerungstechnische Versickerung ist aufgrund des zeitweise nah anstehenden Grundwasserpegels nicht möglich.

Folglich ist die Umsetzbarkeit einer entwässerungstechnischen Versickerungsanlage aufgrund des relativ hohen Grundwasserstandes nicht gegeben.

2.3 Regenrückhalteraum

Für die Oberflächenentwässerung der neuen Verkehrsanlagen und der neu zu schaffenden Flächen wird eine Regenrückhaltung vorgesehen. Hierzu soll der mittig durch das Gebiet verlaufende bestehende Entwässerungsgraben als Regenrückhaltegraben ausgebaut werden und entsprechend Speichervolumen vorhalten.

2.3.1 Bemessungsparameter

Die Dimensionierung des Regenrückhalteraums erfolgt in tabellarischer Form nach dem Arbeitsblatt DWA A 117 "Bemessung von Regenrückhalteräumen" (Ausgabe April 2012).

Folgende Parameter werden bei der Bemessung verwendet:

Angeschlossene Flächen

Die für die Regenrückhaltung maßgebliche Gesamtfläche umfasst ca. 4,6 ha. Davon sind 0,45 ha Verkehrsfläche, 0,915 ha für die Zweckbestimmung kulturellen und sportlichen Zwecken dienenden Gebäude und Einrichtungen, 0,95 ha für das Hallenbad und 2,3 ha für Grünflächen (Dirt-Park, Sportplätze etc.). Davon sind 1,94 ha (42 %) befestigte Fläche und 2,66 m² unbefestigte Fläche (58 %). Die befestigte Fläche setzt sich aus Dachflächen, Straßen, Wegen und Plätzen zusammen.

Drosselabfluss

Für die Einleitung in das vorhandene Regenwasserkanalsystem wird eine mittlere Drosselabflussspende von 1,5 l/(s*ha) vorgesehen.

Fließzeit t_f

Es wird eine Fließzeit von t_f = 10 min für die Berechnung des Rückhaltevolumens angesetzt.

Zuschlagsfaktor fz

Das Ergebnis wird nach Tabelle 2 des Arbeitsblattes DWA A 117 mit dem Zuschlagsfaktor f_z = 1,15 multipliziert. Dies entspricht einem mittlerem Risikomaß in Hinblick auf eine Unterbemessung des Rückhaltevolumens.

Regenhäufigkeit n

Das erforderliche Beckenvolumen wird mit einer Häufigkeit n = 0,2 a⁻¹ bemessen. Dies entspricht statistisch einer Regenrückhaltebeckenfüllung bis zum max. Bemessungsstau in einer Zeitspanne von fünf Jahren.

Regenreihen

Die Niederschlagshöhen ergeben sich aus dem KOSTRA-Atlas des DWD (Deutscher Wetterdienst). Es wird der aktuelle KOSTRA-Atlas, KOSTRA-DWD-2020 4.1 von 2024 verwendet. Die Regenreihen sind im

Anhang "a" aufgeführt. Da die dort angegebenen Werte für Planungszwecke herangezogen werden, sind die Niederschlagshöhen bzw. die Niederschlagsspenden in Abhängigkeit von der Wiederkehrzeit mit einem entsprechenden Toleranzbetrag zu berücksichtigen.

<u>Berechnungsergebnis</u>

Die Berechnung des Speichervolumens zur Rückhaltung des anfallenden Oberflächenwassers beläuft sich auf ca. 420 m³. (siehe Anhang "b")

2.3.2 Bemessung der Rückhalteeinrichtung

Um das erforderliche Speichervolumen von 420 m³ sicherzustellen, könnte der vorhandene Entwässerungsgraben, der mittig durch das Plangebiet verläuft, in Richtung Stadion aufgeweitet werden, sodass er als Rückhaltegraben fungiert.

Bei einem Ausbau des Grabens über eine Länge von 150 m auf eine Sohltiefe von 15,60 m NHN ergibt sich bei einem Dauerstaupegel von 0,50 m und einer Speicherlamelle – unter Berücksichtigung einer Gesamtbreite des Grabens sowie einer Böschungsneigung von n = 1:3 – ein Speichervolumen von etwa 445 m³. Damit wäre eine ausreichende Rückhaltung durch den Ausbau des Grabens sichergestellt.

2.3.3 Drosselabfluss

2.3.4 Oberflächenentwässerung der Bestandsbebauung

Derzeit dient der mittig durch das Plangebiet verlaufende Entwässerungsgraben der Ableitung des anfallenden Oberflächenwassers der umliegenden Flächen und Einrichtungen. Dieser Graben nimmt das Niederschlagswasser aus angrenzenden Bereichen auf und leitet es in das bestehende Entwässerungssystem ab.

Sollte der Graben zu einem Rückhaltegraben umgestaltet werden, wäre es erforderlich, die bestehende Entwässerung, die derzeit über diesen Graben erfolgt, gesondert zu erfassen. Dabei müsste sichergestellt werden, dass das überregionale Oberflächenwasser weiterhin ungehindert abgeleitet wird. Der freie Ablauf dieser bestehenden Entwässerung müsste separat betrachtet werden, um eine Beeinträchtigung der bisherigen Wasserführung zu vermeiden.

Durch diese Maßnahme würde gewährleistet, dass ausschließlich das innerhalb des Plangebietes des Bebauungsplans Nr. 14 "Gemeinde-, Schul- und Sportzentrum" anfallende Oberflächenwasser zurückgehalten wird. Dies stellt eine gezielte Steuerung des Wasserhaushalts sicher und ermöglicht eine bedarfsgerechte Dimensionierung des Rückhalteraums.

2.3.5 Dimensionierung der Drossel

Die Dimensionierung der Drossel und die genaue bauliche Ausgestaltung werden im Rahmen der Entwässerungsgenehmigung festgelegt. Hierfür ist ein separater Entwässerungsantrag zu erstellen.

2.4 Niederschlagswasserbehandlung

Mit Datum Dezember 2020 ist das Arbeitsblatt DWA-A 102/BWK-A 3 "Grundsätze zur Bewirtschaftung und Behandlung von Regenwetterabflüssen zur Einleitung in Oberflächengewässer" erschienen. Im Oktober 2021 wurde bereits eine korrigierte Fassung der DWA-A 102/BWK-A 3 veröffentlicht. Die Richtlinie wurde gemeinsam von der Deutschen Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. (DWA) und dem Bund der Ingenieure für Wasserwirtschaft, Abfallwirtschaft und Kulturbau e. V. (BWK) verfasst. Die DWA-A 102/BWK-A 3 löst das bisherige Arbeitsblatt ATV-A 128 "Richtlinien für die Bemessung und Gestaltung von Regenentlastungsanlagen in Mischwasserkanälen" sowie das Merkblatt DWA-M 153 "Handlungsempfehlung zum Umgang mit Regenwasser" in Bezug auf die Einleitung in Oberflächengewässer ab.

Das Arbeitsblatt DWA-A 102 widmet sich dem Gewässerschutz mit Fokussierung auf niederschlagsbedingte Siedlungsabflüsse und ihre Einleitung in oberirdische Gewässer. Demnach müssen Stoffeinträge durch Niederschlagswasser von belasteten, verschmutzten Flächen vermieden bzw. begrenzt werden. Ziel ist es, die Feststoffe, welche sich im Niederschlagswasser von verschmutzen Flächen befinden, vor Einleitung in oberirdische Gewässer abzuscheiden. Zur Feststellung des Feststoffaufkommens wird gemäß DWA-A 102/BWK-A 3 eine Bewertung des Niederschlagswassers durchgeführt. Wie stark das Niederschlagswasser an einer Einleitstelle verschmutzt ist, hängt von der Herkunft des Niederschlagswassers und den dort charakteristischen Belastungsquellen ab. Anschließend folgt eine Prüfung bei der ermittelt wird, ob eine Behandlung des Niederschlagswassers notwendig ist. Bei Überschreiten des zulässigen Feststoffgehaltes, ist eine entsprechende Behandlung des Niederschlagswassers erforderlich.

Eine erste vorläufige Bewertung des Niederschlagswassers der befestigten Flächen des betrachteten, Gebietes wurde gemäß DWA-A 102/BWK-A 3 durchgeführt. Dabei wurden sämtliche befestigte Flächen, welche am Kanalsystem angeschlossen sind in ihrer Flächennutzung bewertet. Es ist davon auszugehen, dass durch die neu versiegelten Verkehrsflächen (Dachflächen, Verkehrsflächen, Wege, Plätze), eine Belastung für das Niederschlagswasser bzw. für die Gewässer darstellt. Daher resultiert aus der Bewertung ein flächenspezifischer Stoffabtrag von max. 655,70 kg/ha*a. Folglich wird der maximal zulässige flächenspezifische Stoffabtrag von 280 kg/(ha*a) überschritten und die Einleitung in ein oberirdisches Gewässer ist ohne Behandlung des Niederschlagswassers nicht möglich. Eine Regenwasserbehandlungsanlage für den Bereich des B-Plan Nr. 14 Gemeinde-, Schul- und Sportzentrum ist somit gemäß DWA-A 102/BWK-A 3 sehr wahrscheinlich notwendig.

3. Schmutzwasserentwässerung

Die Schmutzwasserentwässerung im Plangebiet fällt in den Zuständigkeitsbereich des Trink- und Abwasserverbandes Bourtanger Moor. Dieser Verband ist verantwortlich für die Sammlung, Ableitung und Aufbereitung des anfallenden Schmutzwassers gemäß den geltenden wasserrechtlichen Vorgaben und technischen Standards.

Im Rahmen des vorliegenden Oberflächenentwässerungskonzepts wird ausschließlich der Ableitung und Rückhaltung des anfallenden Regenwassers betrachtet. Die Schmutzwasserentsorgung bleibt hiervon unberührt und wird nicht in die Planung oder Umsetzung der hier vorgesehenen Maßnahmen einbezogen.

PNr. 2741

Die bestehenden Entwässerungsstrukturen für Schmutzwasser bleiben somit unverändert bestehen und werden weiterhin im bisherigen Umfang durch den zuständigen Verband betreut und betrieben.

4. Zusammenfassung

Das Oberflächenentwässerungskonzept für den Bereich des B-Plan Nr. 14 "Gemeinde-, Schul- und Sportzentrum", 15. Änderung beinhaltet die Anlage verschiedener entwässerungstechnischer Einrichtungen (Regenwasserkanal, Rückhaltung, Drosseleinrichtung). Das Rückhaltevolumen wurde so groß gewählt, dass bei dem angesetzten 5-jährlichen Bemessungsregen kein zusätzliches Oberflächenwasser, im Vergleich zum natürlichen landwirtschaftlichen Abfluss, abgeleitet wird.

Die Entwässerungssysteme außerhalb des Plangebietes, wurden im Konzept berücksichtigt und in die Planung miteinbezogen.

Das Konzept wird im Rahmen der Bauleitplanung erstellt und stellt keinen Genehmigungsantrag dar. Im Rahmen der Erschließungsplanung ist das aufgestellte Oberflächenentwässerungskonzept zu konkretisieren.

Die Einleitung von Niederschlagswasser in ein Gewässer oder in den Untergrund ist gemäß des Wasserhaushaltsgesetz (WHG) genehmigungspflichtig und muss bei der zuständigen Genehmigungsbehörde beantragt werden.

Schortens, Februar 2025

Aufgestellt: B. Eng. Jörg Büsing

B. Eng. Jörg Büsing

Dipl.-Ing. (FH) Horst Rolfs

Gemeinde Twist: OEK – Bereich-West, B-Plan Nr. 14 "Gemeinde-, Schul- und Sportzentrum", 15. Änderung	PNr. 2741
Anhang a	
Niederschlagshöhen - KOSTRA - DWD 2020 4.1 - Atlas des Deuts Wetterdienstes	schen
VVEIGIGIETISIES	

KOSTRA-DWD 2020

Nach den Vorgaben des Deutschen Wetterdienstes - Hydrometeorologie -

Niederschlagshöhen nach **KOSTRA-DWD 2020**

INDEX_RC Rasterfeld : Spalte 104, Zeile 102 : 102104

Bemerkung

Dauerstufe D	Niederschlagshöhen hN [mm] je Wiederkehrintervall T [a]											
	1 a	2 a	3 a	5 a	10 a	20 a	30 a	50 a	100 a			
5 min	6,8	8,6	9,6	11,1	13,1	15,3	16,6	18,5	21,1			
10 min	8,8	11,1	12,5	14,4	17,1	19,8	21,6	24,0	27,4			
15 min	10,1	12,7	14,3	16,4	19,5	22,6	24,7	27,4	31,2			
20 min	11,0	13,8	15,6	17,9	21,2	24,7	26,9	29,8	34,1			
30 min	12,3	15,5	17,5	20,1	23,8	27,7	30,2	33,5	38,2			
45 min	13,8	17,3	19,5	22,4	26,6	30,9	33,7	37,4	42,7			
60 min	14,8	18,7	21,1	24,2	28,7	33,3	36,3	40,3	46,0			
90 min	16,5	20,7	23,4	26,8	31,8	36,9	40,3	44,7	51,0			
2 h	17,7	22,3	25,1	28,8	34,2	39,7	43,3	48,1	54,9			
3 h	19,6	24,6	27,8	31,9	37,8	43,9	47,9	53,2	60,7			
4 h	21,0	26,4	29,8	34,2	40,6	47,1	51,4	57,1	65,1			
6 h	23,2	29,2	32,9	37,8	44,8	52,0	56,8	63,0	71,9			
9 h	25,6	32,2	36,3	41,7	49,4	57,4	62,7	69,5	79,4			
12 h	27,4	34,5	38,9	44,7	53,0	61,6	67,2	74,5	85,1			
18 h	30,3	38,1	42,9	49,3	58,5	67,9	74,1	82,2	93,8			
24 h	32,4	40,8	46,0	52,8	62,7	72,8	79,4	88,1	100,6			
48 h	38,3	48,3	54,4	62,4	74,1	86,0	93,9	104,1	118,9			
72 h	42,3	53,2	60,0	68,8	81,6	94,8	103,5	114,8	131,0			
4 d	45,3	57,0	64,3	73,8	87,5	101,6	110,9	123,0	140,4			
5 d	47,8	60,2	67,8	77,8	92,3	107,2	117,0	129,8	148,2			
6 d	49,9	62,9	70,8	81,3	96,5	112,1	122,3	135,6	154,8			
7 d	51.8	65.2	73.5	84.4	100.1	116.3	126.9	140.8	160.7			

Legende

Т Wiederkehrintervall, Jährlichkeit in [a]: mittlere Zeitspanne, in der ein Ereignis einen Wert einmal erreicht oder

D Dauerstufe in [min, h, d]: definierte Niederschlagsdauer einschließlich Unterbrechungen

hΝ Niederschlagshöhe in [mm]

KOSTRA-DWD 2020

Nach den Vorgaben des Deutschen Wetterdienstes - Hydrometeorologie -

Niederschlagsspenden nach **KOSTRA-DWD 2020**

INDEX_RC Rasterfeld : Spalte 104, Zeile 102 : 102104

Bemerkung

Dauerstufe D	Niederschlagspenden rN [l/(s·ha)] je Wiederkehrintervall T [a]											
	1 a	2 a	3 a	5 a	10 a	20 a	30 a	50 a	100 a			
5 min	226,7	286,7	320,0	370,0	436,7	510,0	553,3	616,7	703,3			
10 min	146,7	185,0	208,3	240,0	285,0	330,0	360,0	400,0	456,7			
15 min	112,2	141,1	158,9	182,2	216,7	251,1	274,4	304,4	346,7			
20 min	91,7	115,0	130,0	149,2	176,7	205,8	224,2	248,3	284,2			
30 min	68,3	86,1	97,2	111,7	132,2	153,9	167,8	186,1	212,2			
45 min	51,1	64,1	72,2	83,0	98,5	114,4	124,8	138,5	158,1			
60 min	41,1	51,9	58,6	67,2	79,7	92,5	100,8	111,9	127,8			
90 min	30,6	38,3	43,3	49,6	58,9	68,3	74,6	82,8	94,4			
2 h	24,6	31,0	34,9	40,0	47,5	55,1	60,1	66,8	76,3			
3 h	18,1	22,8	25,7	29,5	35,0	40,6	44,4	49,3	56,2			
4 h	14,6	18,3	20,7	23,8	28,2	32,7	35,7	39,7	45,2			
6 h	10,7	13,5	15,2	17,5	20,7	24,1	26,3	29,2	33,3			
9 h	7,9	9,9	11,2	12,9	15,2	17,7	19,4	21,5	24,5			
12 h	6,3	8,0	9,0	10,3	12,3	14,3	15,6	17,2	19,7			
18 h	4,7	5,9	6,6	7,6	9,0	10,5	11,4	12,7	14,5			
24 h	3,8	4,7	5,3	6,1	7,3	8,4	9,2	10,2	11,6			
48 h	2,2	2,8	3,1	3,6	4,3	5,0	5,4	6,0	6,9			
72 h	1,6	2,1	2,3	2,7	3,1	3,7	4,0	4,4	5,1			
4 d	1,3	1,6	1,9	2,1	2,5	2,9	3,2	3,6	4,1			
5 d	1,1	1,4	1,6	1,8	2,1	2,5	2,7	3,0	3,4			
6 d	1,0	1,2	1,4	1,6	1,9	2,2	2,4	2,6	3,0			
7 d	0.9	1.1	1.2	1.4	1.7	1.9	2.1	2.3	2.7			

Legende

Т Wiederkehrintervall, Jährlichkeit in [a]: mittlere Zeitspanne, in der ein Ereignis einen Wert einmal erreicht oder

D Dauerstufe in [min, h, d]: definierte Niederschlagsdauer einschließlich Unterbrechungen

rΝ Niederschlagsspende in [l/(s·ha)]

KOSTRA-DWD 2020

Nach den Vorgaben des Deutschen Wetterdienstes - Hydrometeorologie -

Toleranzwerte der Niederschlagshöhen und -spenden nach KOSTRA-DWD 2020

INDEX_RC Rasterfeld : Spalte 104, Zeile 102 : 102104

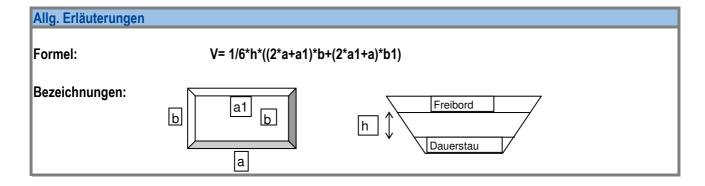
Bemerkung

Dauerstufe D			Toleranzwerte UC je Wiederkehrintervall T [a] in [±%]								
	1 a	2 a	3 a	5 a	10 a	20 a	30 a	50 a	100 a		
5 min	12	13	14	15	16	17	17	17	18		
10 min	14	16	17	18	20	21	21	22	22		
15 min	16	18	19	20	22	23	23	24	25		
20 min	17	19	20	21	23	24	24	25	26		
30 min	17	20	21	22	24	25	25	26	27		
45 min	17	20	21	22	24	25	25	26	27		
60 min	17	20	21	22	24	25	25	26	27		
90 min	16	19	20	21	23	24	24	25	26		
2 h	16	18	20	21	22	23	24	24	25		
3 h	15	17	18	20	21	22	23	23	24		
4 h	14	17	18	19	20	21	22	22	23		
6 h	13	16	17	18	19	20	21	21	22		
9 h	13	15	16	17	18	19	20	20	21		
12 h	13	14	15	16	18	19	19	20	20		
18 h	13	14	15	16	17	18	18	19	19		
24 h	13	14	15	16	17	18	18	18	19		
48 h	15	15	15	16	17	17	18	18	19		
72 h	16	16	16	17	17	18	18	18	19		
4 d	17	17	17	17	18	18	18	19	19		
5 d	18	18	18	18	18	19	19	19	19		
6 d	19	19	18	19	19	19	19	19	20		
7 d	20	19	19	19	19	19	20	20	20		

Legende

Т Wiederkehrintervall, Jährlichkeit in [a]: mittlere Zeitspanne, in der ein Ereignis einen Wert einmal erreicht oder

D Dauerstufe in [min, h, d]: definierte Niederschlagsdauer einschließlich Unterbrechungen


UC Toleranzwert der Niederschlagshöhe und -spende in [±%]

Anhang b

Bemessung von Regenrückhalteräumen nach DWA-A 117

Abmessungen des Regenrückhaltegraben

Volumen des gesamten Regenrückhaltebeckens a = 150,00 m b = 10,00 m A = 1.500,00 m² a1.3 = 141,60 m b1.3 = 1,60 m A = 226,56 m² Gesamthöhe des Beckens h= 1,40 m Teschungsneigung n= 3,0 V= 1192,13 m³ Volumen des Freibord Volumen des Freibord										
a1.3 = 141,60 m b1.3 = 1,60 m A = 226,56 m ² Gesamthöhe des Beckens h= 1,40 m Böschungsneigung n= 3,0 V= 1192,13 m ³ /olumen des Freibord										
a1.3 = 141,60 m b1.3 = 1,60 m A = 226,56 m ² Gesamthöhe des Beckens h= 1,40 m Böschungsneigung n= 3,0 V= 1192,13 m ³ /olumen des Freibord										
Gesamthöhe des Beckens h= 1,40 m Böschungsneigung n= 3,0 V= 1192,13 m³ Volumen des Freibord										
Böschungsneigung n= 3,0 V= 1192,13 m³ /olumen des Freibord										
/olumen des Freibord										
Volumen des Freibord										
$a = 150,00 \text{ m}$ $b = 10,00 \text{ m}$ $A = 1.500,00 \text{ m}^2$										
a = 100,00 m $b = 10,00 m$ $A = 1.500,00 m$										
•										
a1.1 = $147,60 \text{ m}$ b1.1 = $7,60 \text{ m}$ A = $1.121,76 \text{ m}^2$ Höhe des Freibord h= 0.40 m										
,										
Böschungsneigung n= 3,0 V= 523,97 m³										
Volumen der Speicherlamelle (Rückhaltevolumen)										
a1.1= $147,60 \text{ m}$ b1.1= $7,60 \text{ m}$ A = $1.121,76 \text{ m}^2$										
a1.2 = $144,60 \text{ m}$ b1.2 = $4,60 \text{ m}$ A = $665,16 \text{ m}^2$										
Höhe der Lamelle h= 0,50 m										
Böschungsneigung n= 3,0										
V ermittelt = 445,98 m ³										
V erforderlich = 419,00 m ³										
Chaighamalaman ayayaighand										
Speichervolumen ausreichend										
Volumen des Dauerstau										
a1.1= 144,60 m b1.1= 4,60 m A = 665,16 m ²										
a1.3 = $141,60 \text{ m}$ b1.3 = $1,60 \text{ m}$ A = $226,56 \text{ m}^2$										
Höhe des Dauerstau h= 0.50 m										
Böschungsneigung n= 3,0 V= 222,18 m³										
2000gog 0,0 V= 222,10 111										

Bemessung von Regenrückhalteräumen nach dem Arbeitsblatt DWA-A 117

1. Bemessungsgrundlagen:							
Fläche des kanalisierten Einzugsgebietes	A _{E,k} =	4,615	ha				
befestigte Fläche	A _{E,b} =	1,940	ha				
unbefestigte Fläche	A _{E,nb} =	2,675	ha				
mittlerer Abflussbeiwert der befestigten Fläche	y _{m,b} =	0,45	-				
mittlerer Abflussbeiwert der unbefestigten Fläche	y _{m,nb} =	0,10	-				
Trockenwetterabfluss	$Q_{T,d,aM} =$	0	l/s				
vorgegebene Drosselabflussspende	q _{Dr,k} =	1,50	I/(s*ha)				
vorgegebene Überschreitungshäufigkeit	n =	0,2	1/a				
2. Ermittlung der für die Berechnung maßgebenden "undurchlässigen" Fläche A _u :							
$A_u = A_{E,b} * y_{m,b} + A_{E,nb} * y_{m,nb}$	A _u =	1,141	ha				
3. Ermittlung der Drosselabflussspenden:							
$Q_{Dr,max} = q_{Dr,k} * A_{E,k}$	$Q_{Dr,max} =$	6,92	l/s				
$q_{Dr,R,u} = (Q_{Dr} - Q_{T,d,aM}) / A_u$	q _{Dr,R,u} =	6,06	l/(s*ha)				
4. Ermittlung des Abminderungsfaktors f _A :							
mit der Fließzeit	t _f =	10	min				
und der Häufigkeit	n =	0,20	1/a				
ergibt sich nach den Formeln des Anhangs B der Abminderungsfaktor	f _A =	0,996	-				
5. Festlegung des Zuschlagsfaktors f _Z :							
De 7 verble enfelte vied en illustic en illustic en illustration de la constant d	£ _	4.45	_				
Der Zuschlagsfaktor wird gewählt für ein mittleres Risikomaß zu	f _Z =	1,15	_				
6. Anwendung von Gleichung 2 für ausgewählte Dauerstufen:	T _Z =	1,15					

 $V_{s,u} = (r_{D,n} - q_{Dr,R,u}) * D * f_Z * f_A * 0.06$

Dauer-	Nieder-	Regen-	Toleranz-	Bemessungs-	Drossel-	Differenz	spezifisches
stufe	schlags-	spende	wert nach	regenspende	abfluss-	zw. r _{B.n}	Speichervolumen
Stute	_	spende		regenspende		_,	operation volunion
	höhe		Kostra-DWD		spende	und	
D	hN	r _{D,n}	2020 4.1	r _{B,n}	$q_{Dr,R,u}$	$q_{Dr,R,u}$	$V_{s,u}$
[min]	[mm]	[l/s*ha]	[%]	[l/s*ha]	[l/s*ha]	[l/s*ha]	[m³/ha]
45	22,4	83,0	22,0	101,3	6,1	95,2	295
60	24,2	67,2	22,0	82,0	6,1	75,9	313
90	26,8	49,6	21,0	60,0	6,1	53,9	334
120	28,8	40,0	21,0	48,4	6,1	42,3	349
180	31,9	29,5	20,0	35,4	6,1	29,3	363
240	34,2	23,8	19,0	28,3	6,1	22,2	367
360	37,8	17,5	18,0	20,7	6,1	14,6	362
540	41,7	12,9	17,0	15,1	6,1	9,0	335
720	44,7	10,3	16,0	11,9	6,1	5,8	289
1080	49,3	7,6	16,0	8,8	6,1	2,7	203
1440	52,8	6,1	16,0	7,1	6,1	1,0	103
Größtwert bei	240 min			Erforderlich	nes spezifisches	367 m³/ha	

estimmung des erforderlichen Rückhaltevolumens nach Gleichung 3:									
$V = V_{s,u} * A_u =$	367 m³/ha *	1,14 ha	٧	<i>l</i> =	419	m³			
Entleerungszeit des Beckens									
$t_E = V_{erf} / Q_{Dr,max} =$	419 m³ /	(6,92 / 1000 * 60 * 60)	t	E=	16,82	Std			

Anhang c Bestimmung des Abflussbeiwertes nach DWA-A 138

Gemeinde Twist: OEK B-Plan Nr. 14 "Gemeinde-, Schul- und Sportzentrum"

Bestimmung des Abflussbeiwertes nach DWA-A 138, ATV-DVWK-A 117 und ATV-DVWK-M 153

Auftraggeber: Gemeinde Twist

Projektbezeichnung: B-Plan Nr. 14 "Gemeinde-, Schul- und Sportzentrum

Projektnummer: 2741

Gesamtgröße des kanalisierten Einzugsgebiets (A_{E,k})

46.150 m²

Eb	ene 1		Ebene 2			Ebene 3			Ebene 4							
Flächentyp	Anteil		Anteil		Anteil		Flächentyp	Anteil a	a. d. Obergr.	Flächentyp	Anteil a	a. d. Obergr.	Flächentyp	Abflussbeiwert (ψ)	Anteil a	. d. Obergr.
,,	proz.	absolut	,	proz.	absolut	<i>'</i> '	proz.	absolut	,,		proz.	absolut				
befestigten Fläche	42,0 %	19.400 m²	Dachfläche	10,3 %	2.000 m²	Schrägdach	25 %	500 m²	Metall, Glas, Schiefer, Faserzement Ziegel, Dachpappe	0,95 0,90	0 % 100 %	0 m² 500 m²				
									Restwert (muss 0 % sein)		0 %					
						Flachdach	50 %	1.000 m²	Metall, Glas, Faserzement Dachpappe Kies Restwert (muss 0 % sein)	0,95 0,90 0,70	100 % 0 % 0 %	1.000 m ² 0 m ² 0 m ²				
						Gründach	25 %	500 m²	humisiert < 10 cm Aufbau humisiert > 10 cm Aufbau	0,50 0,30	100 %	500 m ² 0 m ²				
						Restwert (muss 0 % sein)	0 %		Restwert (muss 0 % sein)		0 %					
			Straßen, Wege, Plätze (flach)	89,7 %	17.400 m²				Asphalt, fugenloser Beton Pflaster mit dichten Fugen fester Kiesbelag Pflaster mit offenen Fugen lockerer Kiesbelag, Schotterrasen	0,75 0,60 0,50 0,30	4,6 % 34,5 %	3.000 m ² 1.500 m ² 100 m ² 800 m ² 6.000 m ²				
									Verbundsteine mit Fugen, Sickersteine Rasengittersteine	0,25	0 % 34,5 %	0 m ² 6.000 m ²				
			Restwert (muss 0 % sein)	0 %					Restwert (muss 0 % sein)	0,15	0 %	0.000 111-				
unbefestigten Fläche	58,0 %		Böschungen, Bankette und Gräben mit Regenabfluss in das Entwässerungssystem	18,7 %	5.000 m²				toniger Boden Lehmiger Sandboden Kies und Sandboden Restwert (muss 0 % sein)	0,50 0,40 0,30	0 % 0 % 100 %	0 m ² 0 m ² 5.000 m ²				
			Gärten, Weiden und Kulturland mit mit Regenabfluss in das in das Entwässerungssytem	81,3 %	21.750 m²				flaches Gelände steiles Gelände	0,05 0,20	100 % 0 %	21.750 m² 0 m²				
			Restwert (muss 0 % sein)	0 %					Restwert (muss 0 % sein)		0 %					
Regenrückhaltung	- %	0 m ²	Regenrückhaltebecken	100 %	0 m ²	Î		l	Wasseroberfläche	1,00	100 %	0 m ²				

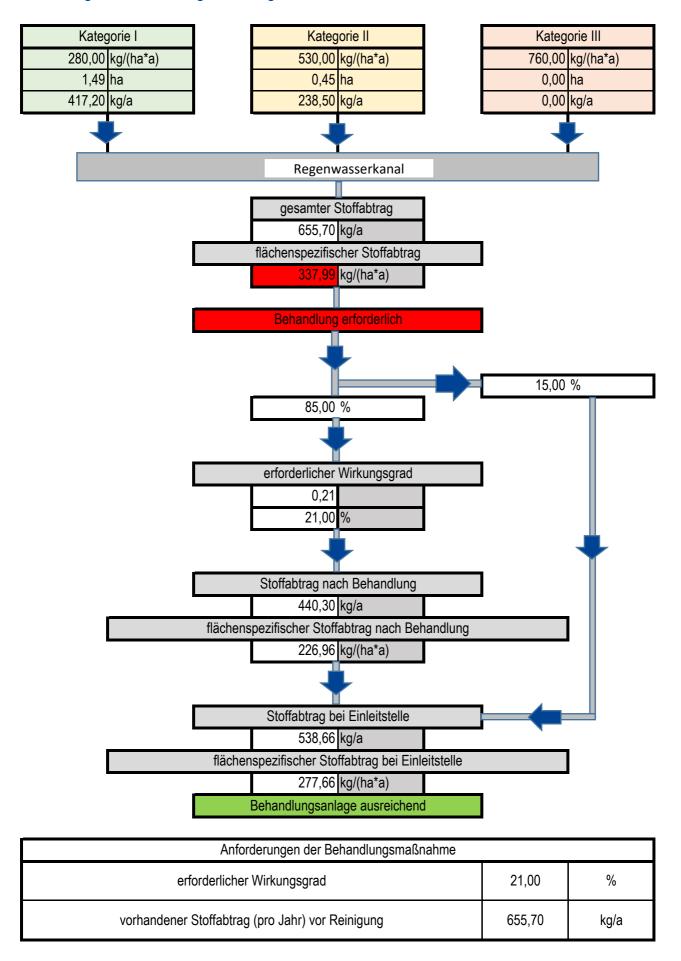
Ergebnis (mittlere Abflussbeiwerte):	undurchlässige Fläche (ψ _{m,b})	:	0,45
	durchlässige Fläche (ψ _{m,nb})	:	0,10
	Mittelwert (ψ m)	:	0,24

Anhang d Bewertung von Niederschlagswasser nach dem Arbeitsblatt DWA-A 102/BWK-A 3

PNr.: 2741

Überprüfung und Festlegung der Niederschlagsbehandlung

Auftraggeber: Gemeinde Twist


Projektbezeichnung: B-Plan Nr. 14 "Gemeinde-, Schul- und Sportzentrum", 15. Änderung

Projektnummer: 2741

Zuteilung und Kategorisierung der Flächen gemäß DWA-A 102

	Eläobo Ab o	davon							
Flächentyp	Fläche Ab,a	Kategorie I		Ka	tegorie II	Kategorie III			
	[ha]	[ha]	TYP	[ha]	TYP	[ha]	TYP		
Dachflächen	0,20	0,20	D	-	-	-	-		
Verkehrsflächen	0,45	ı	-	0,45	V2	-	-		
Außenanlagen	1,29	1,29	VW1	-	-	-	-		
-	-	-	-	-	-	-	-		
Summenwerte	1,94		1,49	0,45		0,00			

Bewertung des Niederschlagswassers gemäß DWA-A 102

Bewertung des Niederschlagswassers gemäß DWA-A 102

Aus der Kategorie I zugeteilten Fläche (1,49 ha) entsteht ein Stoffabtrag von 417,20 kg pro Jahr. Aus der Kategorie II zugeteilten Fläche (0,45 ha) ensteht ein Stoffabtrag von 238,50 kg pro Jahr und aus der Kategorie III zugeteilten Fläche (0,00 ha) ensteht ein Stoffabtrag von 0,00 kg pro Jahr.

Aus dem untersuchten Einzugsgebiet resultiert ein gesamter Stoffabtrag von 655,70 kg pro Jahr. Um eine Prüfung der Behandlungsbedürftigkeit des Oberflächenwassers durchzuführen wird der gesamte Stoffabtrag [kg/a] durch die befestigte, angeschlossene Fläche [ha] dividiert. Daraus resultiert der flächenspezifische Stoffabtrag [kg/ha*a].

Der vorhandene flächenspezifische Stoffabtrag beträgt 337,99 kg pro ha und Jahr. Die DWA-A 102 gibt einen zulässigen flächenspezifischen Stoffabtrag von 280 kg pro ha und Jahr vor. Folglich ist eine Behandlung erforderlich.

Gemäß der DWA-A 102 wird angenommen, dass infolge von hohen Starkregenereignissen ein Teil des Niederschlagswassers (BR,U) an der Behandlungsanlage vorbei fließt. Somit muss der Teilstrom der durch die Behandlungsanlage fließt (BR,in) etwas mehr gerinigt werden, um einen gewissen Puffer zu schaffen und den nicht behandelten Teilstrom (BR,U) an der Einleitstelle zu kompensieren.

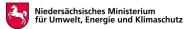
In diesem Fall wurde angenommen, dass 85,00 % des anfallenden Oberflächenwassers durch die Behandlungsanlage fließen und 15,00 % des anfallenden Oberflächenwassers an der Behandlungsanlage vorbei fließen.

Von dem anfallende Oberflächenwasser der Behandlungsanlage müssen 21,00 % der Feststoffe abgeschieden werden. Das gereinigte Oberflächenwasser enthählt ein flächenspezifischen Stoffabtrag von 226,96 kg pro ha und Jahr.

Hinzu kommt das nicht gereinigte Oberflächenwasser was die Behandlungsanlage umfließt. Daraus resultiert ein gesamter flächenspezifischer Stoffabtrag von 277,66 kg pro ha und Jahr.

Folglich ist die Behandlungsanlage ausreichend, da der zulässige flächenspezifische Stoffabtrag von 280 kg pro ha und Jahr nicht überschritten wird.

Anhang e Kartenauszug Wasserschutzgebiet


Keine Schutzgebiete vorhanden

0,05 0,1 0,2 km

Quelle: Auszug aus den Geobasisdaten des Landesamtes für Geoinformation und Landesvermessung Niedersachsen. LGLN

Maßstab: 1:5.000

Datum: 30.01.2025

Legende

Trinkwa	asserschutzgebiete (WSG) nach Zustand		Schutzzone IIIC
Trinkwa	sserschutzgebiete (WSG) nach Zustand		Schutzzone IV
	Abgrenzung einer amtlichen Festsetzung durch Verordnung		Schutzzone V
	Abgrenzung eines Verordnungsentwurfs		Schutzzone VI
	vorgesehenes WSG mit vorläufigen Anordnungen nach § 52 Abs. 2 WHG		Schutzzone A (quantitativ)
Trinkwa	asserschutzgebiete (WSG) nach Schutzzone		Schutzzone B (quantitativ)
Trinkwa	sserschutzgebiete (WSG) nach Schutzzone		Schutzzone B (quantitativ)
	Schutzzone I		Schutzzone D (quantitativ)
	Schutzzone II		keine Angabe
	Schutzzone IIA		assergewinnungsgebiete (TGG) nach Zustand
	Schutzzone IIB	Trinkwa	ssergewinnungsgebiete (TGG) nach Zustand
	SCHULLOILE IIB		Hydrogeologische Abgrenzung eines zugelassenen Wasserrechts
	Schutzzone III		Hydrogeologische Abgrenzung eines beantragten Wasserrechts
	Schutzzone IIIA		sonstige hydrogeologische Abgrenzung
	Schutzzone IIIB	Trinkwa	assergewinnungsgebiete (TGG) nach Schutzzone
	keine Angabe		
	Kellie Aligabe	Trinkwa	ssergewinnungsgebiete (TGG) nach Schutzzone
Heilque	ellenschutzgebiete (HQSG) nach Zustand	Trinkwa	ssergewinnungsgebiete (TGG) nach Schutzzone Schutzzone I
-	-	Trinkwas	
-	ellenschutzgebiete (HQSG) nach Zustand	Trinkwas	Schutzzone I
-	ellenschutzgebiete (HQSG) nach Zustand lenschutzgebiete (HQSG) nach Zustand	Trinkwas	Schutzzone II Schutzzone III
Heilquel	ellenschutzgebiete (HQSG) nach Zustand lenschutzgebiete (HQSG) nach Zustand Abgrenzung einer amtlichen Festsetzung durch Verordnung	Trinkwas	Schutzzone II Schutzzone III Schutzzone IIII
Heilquel Heilquel	ellenschutzgebiete (HQSG) nach Zustand lenschutzgebiete (HQSG) nach Zustand Abgrenzung einer amtlichen Festsetzung durch Verordnung Abgrenzung eines Verordnungsentwurfs	Trinkwas	Schutzzone II Schutzzone III
Heilquel Heilquel	ellenschutzgebiete (HQSG) nach Zustand lenschutzgebiete (HQSG) nach Zustand Abgrenzung einer amtlichen Festsetzung durch Verordnung Abgrenzung eines Verordnungsentwurfs ellenschutzgebiete (HQSG) nach Schutzzone	Trinkwas	Schutzzone II Schutzzone III Schutzzone IIII
Heilquel Heilquel	ellenschutzgebiete (HQSG) nach Zustand lenschutzgebiete (HQSG) nach Zustand Abgrenzung einer amtlichen Festsetzung durch Verordnung Abgrenzung eines Verordnungsentwurfs ellenschutzgebiete (HQSG) nach Schutzzone lenschutzgebiete (HQSG) nach Schutzzone	Trinkwa	Schutzzone II Schutzzone III Schutzzone IIII Schutzzone IIIA Schutzzone IIIB keine Angabe asser Prioritätenprogramm
Heilquel Heilquel	ellenschutzgebiete (HQSG) nach Zustand lenschutzgebiete (HQSG) nach Zustand Abgrenzung einer amtlichen Festsetzung durch Verordnung Abgrenzung eines Verordnungsentwurfs ellenschutzgebiete (HQSG) nach Schutzzone lenschutzgebiete (HQSG) nach Schutzzone Schutzzone I Schutzzone II	Trinkwa	Schutzzone II Schutzzone III Schutzzone IIII Schutzzone IIIA Schutzzone IIIB keine Angabe
Heilquel Heilquel	ellenschutzgebiete (HQSG) nach Zustand lenschutzgebiete (HQSG) nach Zustand Abgrenzung einer amtlichen Festsetzung durch Verordnung Abgrenzung eines Verordnungsentwurfs ellenschutzgebiete (HQSG) nach Schutzzone lenschutzgebiete (HQSG) nach Schutzzone Schutzzone I Schutzzone II Schutzzone IIA	Trinkwa	Schutzzone II Schutzzone III Schutzzone IIII Schutzzone IIIA Schutzzone IIIB keine Angabe asser Prioritätenprogramm
Heilquel Heilquel	ellenschutzgebiete (HQSG) nach Zustand lenschutzgebiete (HQSG) nach Zustand Abgrenzung einer amtlichen Festsetzung durch Verordnung Abgrenzung eines Verordnungsentwurfs ellenschutzgebiete (HQSG) nach Schutzzone lenschutzgebiete (HQSG) nach Schutzzone Schutzzone I Schutzzone II	Trinkwa	Schutzzone II Schutzzone III Schutzzone IIII Schutzzone IIIA Schutzzone IIIB keine Angabe asser Prioritätenprogramm agsbereich
Heilquel Heilquel	ellenschutzgebiete (HQSG) nach Zustand lenschutzgebiete (HQSG) nach Zustand Abgrenzung einer amtlichen Festsetzung durch Verordnung Abgrenzung eines Verordnungsentwurfs ellenschutzgebiete (HQSG) nach Schutzzone lenschutzgebiete (HQSG) nach Schutzzone Schutzzone I Schutzzone II Schutzzone IIA	Trinkwa	Schutzzone II Schutzzone III Schutzzone IIII Schutzzone IIIA Schutzzone IIIB keine Angabe asser Prioritätenprogramm agsbereich C
Heilquel Heilquel	ellenschutzgebiete (HQSG) nach Zustand lenschutzgebiete (HQSG) nach Zustand Abgrenzung einer amtlichen Festsetzung durch Verordnung Abgrenzung eines Verordnungsentwurfs ellenschutzgebiete (HQSG) nach Schutzzone lenschutzgebiete (HQSG) nach Schutzzone Schutzzone I Schutzzone II Schutzzone IIA Schutzzone IIB	Trinkwa	Schutzzone II Schutzzone III Schutzzone IIII Schutzzone IIIA Schutzzone IIIB keine Angabe asser Prioritätenprogramm agsbereich C B2
Heilquel Heilquel	ellenschutzgebiete (HQSG) nach Zustand lenschutzgebiete (HQSG) nach Zustand Abgrenzung einer amtlichen Festsetzung durch Verordnung Abgrenzung eines Verordnungsentwurfs ellenschutzgebiete (HQSG) nach Schutzzone lenschutzgebiete (HQSG) nach Schutzzone Schutzzone I Schutzzone II Schutzzone IIA Schutzzone IIB Schutzzone III	Trinkwa	Schutzzone II Schutzzone III Schutzzone IIII Schutzzone IIIA Schutzzone IIIB keine Angabe asser Prioritätenprogramm agsbereich C B2 B1

Anhang f Kartenauszug Gewässerkarte

Legende

Gewässernetz

Bundeswasserstraße (Gew. I. Ordnung)

Landeswasserstraße (Gew. II. Ordnung)

Verordnungsgewässer (Gew. II. Ordnung)

> sonstiges Gewässer (Gew. III. Ordnung)

Graben

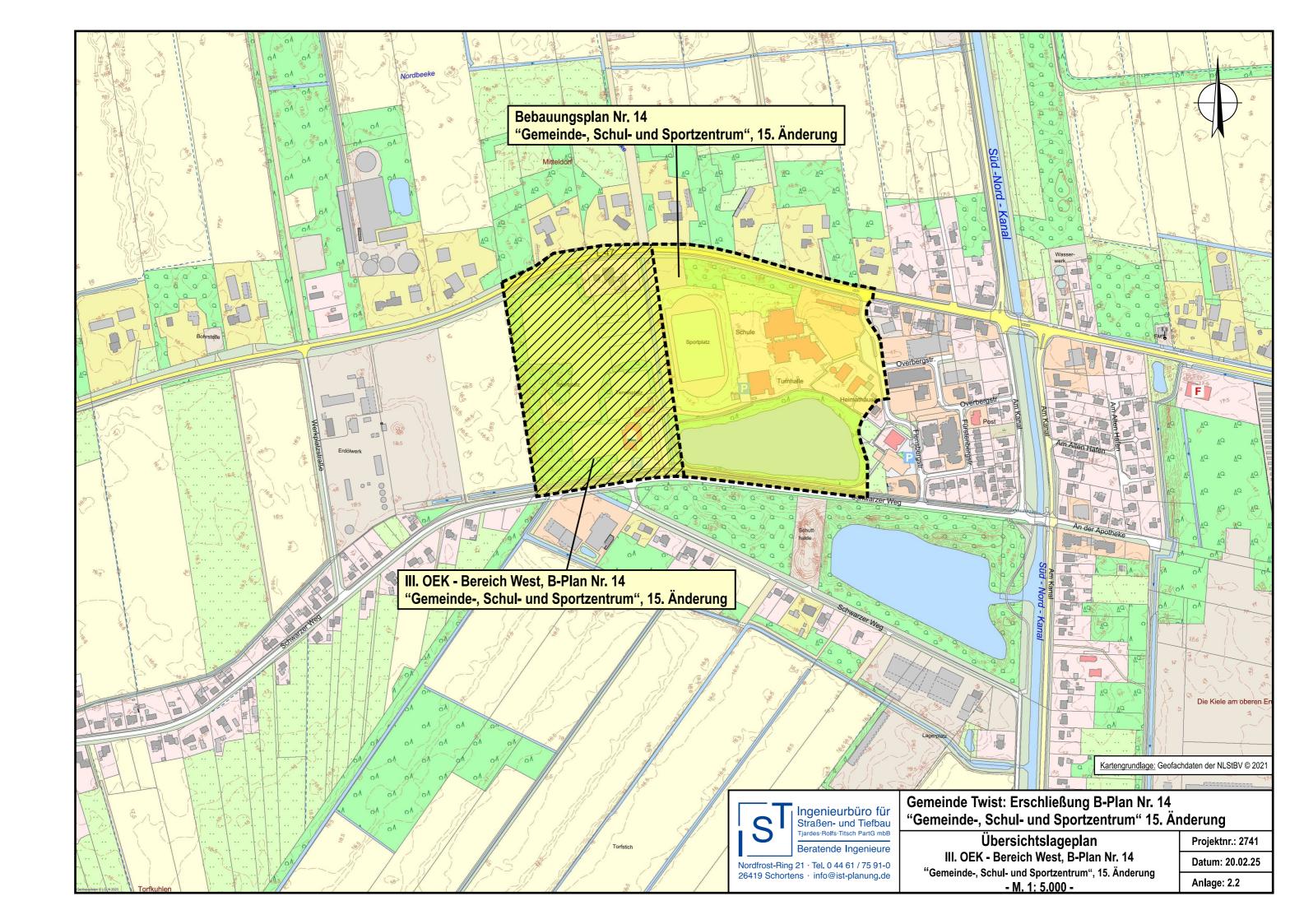
(Gew. III. Ordnung) bedeckter Verlauf

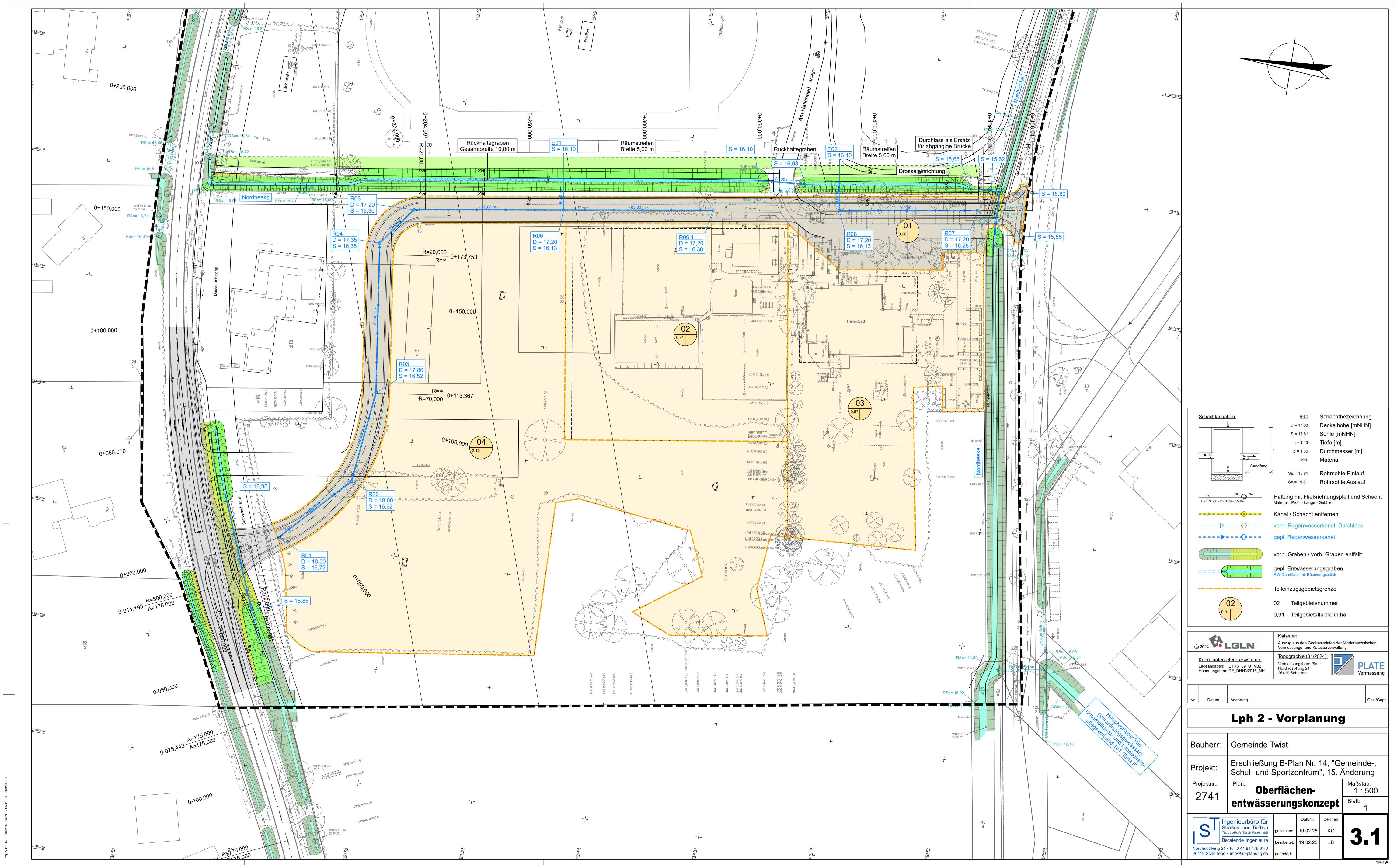
Laufverbindung

Einzugsgebiet

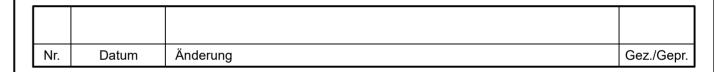
Hauptableitungsweg

0,05 0,1 0,2 km


Quelle: Auszug aus den Geobasisdaten des Landes-amtes für Geoinformation und Landesvermessung Niedersachsen. **⇔**LGLN


Maßstab: 1:5.000

Datum: 05.02.2025



Bestandsprofile Profil 1-1 Profil 2-2 Profil 3-3 3,90 2,85 3,20 1,05 1,35 1,50 1,35 1,10 60 1,25 85 Geplanter Rückhaltegraben 10,00 4,20 4,20 1,60 Freibord Profil 2-2 Annahmen Rückhaltegraben 50 Speicherlamelle 1,40 Länge ca. 150 m Breite 10,00 m Höhe 1,40 m Dauerstau 50 17,00 mNHN Gelände OK Sohle 15,60 mNHN

Lph 2 - Vorplanung

Bauherr:	Gemeinde Twist			
Projekt:	Erschließung B-Plan Nr. 14, "Gemeinde-, Schul- und Sportzentrum", 15. Änderung			
Projektnr.:	Plan:	Maßstab:		
2741	Systemskizze	1 : 25		
	Rückhaltegraben 1			

	Ingenieurbüro für Straßen- und Tiefbau	T			
gezeichne	Tjardes·Rolfs·Titsch PartG mbB	15'	i		
bearbeitet:	Beratende Ingenieure				
	Nordfrost-Ring 21 · Tel. 0 44 61 / 75 91-0				
geändert:	26419 Schortens · info@ist-planung.de				

Datum: Zeichen:
eichnet: 19.02.25 KO
rbeitet: 19.02.25 JB

CARD/1